Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng TCCDTSBN, ta có :
\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)
=> a1/a2 = 1 => a1 = a2
....
a9/a1 = 1 => a9 = a1
Từ tất cả điều trên => đpcm
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)
\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)
\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)
\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)
\(\Rightarrow A=\text{}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)
Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)
=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)
<=> \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
Ta có: a22=a1a3 và a32=a2a4
=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)
Lại có:\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)
=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Vậy:\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Rất mún nhưng mk mệt lắm.Đánh máy một nửa rồi xong lại mỏi thế thôi
a22=a1 . a2 ; a32=a2 . a4
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)= \(\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\)
=> \(\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}=\frac{a1.a2.a3}{a2.a3.a4}=\frac{a1}{a4}\)
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html