K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Bài 1.

a) Xét \(\Delta AIE\)\(\Delta BIC\) có:

\(IE=IB\)

\(\widehat{AIE}=\widehat{BIC}\left(đđ\right)\)

\(AI=IC\)

Vậy \(\Delta AIE\) $=$ \(\Delta BIC\) $(c.g.c)$

\(\Rightarrow AE=BC\)

b) \(\Delta AIE\) $=$ \(\Delta BIC\)

\(\Rightarrow\widehat{EAI}=\widehat{ICB}\)(so le trong)

\(\Rightarrow AE//BC\)

23 tháng 1 2020

Bài 2.

a) Xét \(\Delta AMB\)\(\Delta AMC\) có:

\(AB=AC\left(gt\right)\\MB=MC\left(gt\right)\\ AM:chung \)

Vậy \(\Delta AMB\) $=$\(\Delta AMC\) $(c.c.c)$

b) \(\Delta AMB\) $=$\(\Delta AMC\) (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)

\(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\) (do tia $AM$ nằm giữa 2 tia $AB$ và $AC$)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}=\)\(\dfrac{{\widehat {BAC}}}{2} \)

\(\Rightarrow\)$AM$ là tia phân giác của $\widehat{BAC}$

c)Vì \(\Delta AMB\) $=$\(\Delta AMC\) (cmt)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\)\(\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp BC\)

d) Vẽ tia $Am$ sao cho $\widehat{CAm}$ là góc ngoài tại đỉnh A của \(\Delta ABC\)

\( \Rightarrow\) $\widehat{CAm}=\widehat{ABC}+\widehat{ACB} (1)$ (tính chất góc ngoài của tam giác)

$\Delta AMB = \Delta AMC (cmt)$

$\Rightarrow \widehat{ABM}=\widehat{ACM}$

$\Rightarrow \widehat{ABC}=\widehat{ACB}$ \(\left(M\in BC\right)\)$(2)$
Từ $(1)$ và $(2)$ suy ra:

$\Rightarrow \widehat{CAm}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}$

Mà $\widehat{CAm} = 2\widehat{A_1}$ (do $At$ là tia phân giác của

$\widehat{CAm}$)

$\Rightarrow \widehat{ACB}=\widehat{A_1}$

$\Rightarrow At//BC$

14 tháng 12 2016

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành

\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)

a,xét ΔABM và ΔECM có:

\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)

→ΔABM=ΔECM(c.c.c)

b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến

nên ΔABD cân tại B

→BC là phân giác của \(\widehat{ABD}\)

ΔABD cân tại B →AB=BD(2)

Từ (1),(2)→BD=CE

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của...
Đọc tiếp

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶

Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC

Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều

0
16 tháng 7 2023

ai giúp mình với làm ơn

a: AH<AD

=>H nằm giữa B và D

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>EA=ED 

mà BA=BD

nên BE là trung trực của AD

c: góc CAD+góc BAD=90 độ

góc HAD+góc BDA=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

17 tháng 3 2016

A B C D E

Hình này mình không đo nên không đúng lắm

17 tháng 3 2016

Huỳnh Châu Giang ơi DE vuông góc với BC mà bạn vẽ sai rồi

Xét ΔABC và ΔADE có 

AB=AD

\(\widehat{BAC}\) chung

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: \(\widehat{MCD}=\widehat{MEB}\)

Xét ΔCBE và ΔEDC có

CB=ED

CE chung

BE=DC

Do đó: ΔCBE=ΔEDC

Suy ra: \(\widehat{MBE}=\widehat{MDC}\)

Xét ΔMBE và ΔMDC có

\(\widehat{MBE}=\widehat{MDC}\)

BE=DC

\(\widehat{MEB}=\widehat{MCD}\)

Do đó: ΔMBE=ΔMDC

Suy ra: ME=MC

Xét ΔAME và ΔAMC có

AM chung

ME=MC

AE=AC

Do đó: ΔAME=ΔAMC

Suy ra: \(\widehat{EAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc xAy