Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a)tam giác ABC cân tại A(gt)
=>góc ABC=góc ACB
Xét tam giác BEP có: E thuộc đường trung trực của BP
=>BE=EP
=>tam giác BEP cân tại E
=>góc EBP=góc EPB,mà góc EBP=góc ACB (do góc ABC=góc ACB(cmt))
=>góc EPB=góc ACN,mà chúng ở vị trí đồng vị
=>EP//CF hay EP//AF
Xét tam giác CPF có: F thuộc đường trung trực CP=>CF=PF
=>tam giác CPF cân tại F
=>góc FPC=góc FCP,mà ABC=góc FCP(do góc ABC=góc ACB(cmt))
=>góc FPC=góc ABC,mà chúng ở vị trí đồng vị
=>AB//PF hay AE//PF
Xét tứ giác AEPF có: EP//AF (cmt); AE//PF(cmt)
=>tứ giác AEPF là hình bình hành (DHNB.......)
b, AEPF là hình bình hành (cmt)
=>AF=PE
Lại có CF=PF(cmt)
=>PE + PF = AF + CF = AC không phụ thuộc vào vị trí của điểm P trên BC
a) Xét tam giác ABC có:
M là trung điểm BC(gt)
ME//AC(gt)
=> E là trung điểm AB
Xét tam giác ABC có:
M là trung điểm BC(gt)
MF//AB(gt)
=> F là trung điểm AC
Xét tam giác ABC có:
E là trung điểm AB(cmt)
F là trung điểm AC(cmt)
=> EF là đường trung bình
b) Xét tam giác ABC cân tại A có:
AM là đường trung tuyến(M là trung điểm BC)
=> AM là đường trung trực BC
=> AM⊥BC
Mà EF//BC(EF là đường trung bình)
=> EF⊥AM
Mà \(AE=AF=\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
=> AM là đường trung trực EF
Một bài toán hay
Bạn tự vẽ hình nhé
Ta có
Góc B = Góc C (tam giác ABC cân tại A) (1)
Tam giác BEP và tam giác FPC lần lượt cân tại E và F Vì có đường trung tuyến và trung trực trùng nhau
=> Góc EPB =Góc EBP : Góc FCP = Góc FPC (2)
Từ (1) và (2)
=> Góc EPB =Góc EBP =Góc FCP = Góc FPC
Thay Góc EPB =Góc EBP = Góc FPC Bằng góc C
+) Góc EPF = 180 độ -(2x Góc C)
+) Góc PFC=180 độ -(2x Goc C)
=> Góc EPf =Góc PFC
=> EP // AF (*)
Góc EAP= 2x Góc C (tc góc ngoài )
Mà Góc EPF+2x Góc C =180 độ
=> Góc EAP +Góc EP=180 đọ
=>AE//PF (**)
Từ (*) và (**) => EAPF là hình bình hành
B sửa lại thành PE+PF nhé
EAPF là hình bình hành => EA=FP
Mặt khác EB=EF
=>EP+FP=EA+EB=AB ( cst)
Chúc bạn hok tốt ^^