Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
*) Ta có: AC // Ox
Oy cắt AC tại C, cắt Ox tại O
Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau
Mà \(\widehat{xOy}\)= \(70^o\)=> \(\widehat{ACy}\)= \(70^o\)
*) Ta có: BA // Oy
AC cắt BA tại A, cắt Oy tại C
Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)
=> \(\widehat{DAz}\)= \(70^o\)
Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh
=> \(\widehat{BAC}\)= \(70^o\)
Ta có: \(\widehat{BAC}\)+ \(\widehat{CAz}=180^o\)(2 góc kề bù)
=> \(\widehat{CAz}=110^o\)
Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)= \(110^o\)
Vậy...
a) AB//CO ( vì cùng vuông góc với Ox)
OB//AC ( vì cùng vuông góc với Oy)
b) góc BAC=\(90^0\)
`a,` Gọi `a` giao `b` là `O'`.
Ta có: `hat(OAB) + hat(ABO') + hat(BO'A) + hat(AOB) = 360^o`
`<=> 90^o + 90^o + 90^o + hat(AO'B) =360^o`
`<=> hat(AO'B) = 90^o => a` vuông góc `b`.
`b,` Do `hat(xOy) = 90^o` nên `A, O, B` thẳng hàng.
Vì `hat(aAB) + hat(bBA) = 90^o + 90^o = 180^o` nên `a////b`.
Xét ΔABO vuông tại B và ΔACO vuông tại C có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đó: ΔABO=ΔACO
Suy ra: AB=AC
hay ΔABC cân tại A
mà \(\widehat{CAB}=180^0-120^0=60^0\)
nên ΔABC đều
a,ta có : a+b+c=180độ(giả thiết)
==> c=180độ - a -b=180độ - 70 độ- 80độ
c=30độ
vì a//bc
==> a=c(so le tròng)
==> c=80độ