Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1010+1007+\frac{2017}{113}+\frac{2017}{117}-\frac{1010}{119}-\frac{1007}{119}}{1010+1008+\frac{2018}{113}+\frac{2018}{117}-\frac{1010}{119}-\frac{1008}{119}}\)
\(B=\frac{2017+\frac{2017}{113}+\frac{2017}{117}-\frac{2017}{119}}{2018+\frac{2018}{113}+\frac{2018}{117}-\frac{2018}{119}}\)
\(B=\frac{2017.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2018.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)
\(B=\frac{2017}{2018}\)
Vậy \(B=\frac{2017}{2018}\)
Chúc bạn học tốt !!!
Đề ???
\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{1003}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)
\(=\frac{2010+\frac{2010}{113}+\frac{2010}{117}-\frac{2010}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\)
\(=\frac{2010.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2011.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)
\(=\frac{2010}{2011}\)
\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{100}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)
\(A=\frac{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)+ \(\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{903}{119}-\frac{1}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)
\(A=1+\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{904}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\)
\(A=\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}-\frac{90.}{119}}{2011+2011.\left(\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)
\(A=\frac{\frac{90}{119}}{2010+2011}\)
\(A=\frac{\frac{90}{119}}{4021}\)
sory mk ghi sai đề \(\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)}{\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}}\)
Đặt \(T=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\)
Ta thấy tử số bằng với mẫu số nên phân số có giá trị bằng 1.