Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2 nên
( d ) đi qua A( 2,0 )
Thay A( 2,0 ) vào đường thẳng d ta được
\(\left(1-m\right).2+m+2=0\)
\(2-2m+m+2=0\)
\(4-m=0\)
\(m=4\)
b, Đường thẳng d song song vs đường thẳng y = 2x - 1 nên
1 - m = 0 và m + 2 khác -1
m = 1 và m khác -3
a: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
vậy: \(A\left(-\dfrac{3}{m+1};0\right)\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: B(0;3)
\(OA=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{3}{m+1}\right)^2}=\left|\dfrac{3}{m+1}\right|\)
\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0+9}=3\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot3\cdot\dfrac{3}{\left|m+1\right|}=\dfrac{9}{2\left|m+1\right|}\)
Để \(S_{AOB}=9\) thì \(\dfrac{9}{2\left|m+1\right|}=9\)
=>2|m+1|=1
=>|m+1|=1/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{1}{2}\\m+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
1: Để (d)//y=-3x+2 thì \(\left\{{}\begin{matrix}m-1=-3\\4< >2\end{matrix}\right.\)
=>m-1=-3
=>m=-2
2: Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+4=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-4}{m-1}\end{matrix}\right.\)
=>\(A\left(-\dfrac{4}{m-1};0\right)\)
\(OA=\sqrt{\left(-\dfrac{4}{m-1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{4}{m-1}\right)^2}=\dfrac{4}{\left|m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x+4=0\cdot\left(m-1\right)+4=4\end{matrix}\right.\)
=>B(0;4)
=>\(OB=\sqrt{\left(0-0\right)^2+\left(4-0\right)^2}=4\)
Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot4\cdot\dfrac{4}{\left|m-1\right|}=\dfrac{8}{\left|m-1\right|}\)
Để \(S_{AOB}=2\) thì \(\dfrac{8}{\left|m-1\right|}=2\)
=>\(\left|m-1\right|=\dfrac{8}{2}=4\)
=>\(\left[{}\begin{matrix}m-1=4\\m-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
Bài 1:
a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0
=>-m>-1
=>m<1
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)
=>\(OB=\left|m+2\right|\)
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)
=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(m\in\left\{0;2;-2\right\}\)
Sửa đề: (d): y=(m-3)x-2m+2
a: Để hàm số đồng biến thì m-3>0
=>m>3
b: Khi m=2 thì (d): y=(2-3)x-2*2+2=-x-2
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m+1=m-3\\-2m+2< >4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=-4\\-2m< >2\end{matrix}\right.\Leftrightarrow m=-2\)
d: tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-2}{m-3}\end{matrix}\right.\)
=>\(OA=\left|\dfrac{2m-2}{m-3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=0\left(m-3\right)-2m+2=-2m+2\end{matrix}\right.\)
=>\(OB=\left|-2m+2\right|=\left|2m-2\right|\)
ΔOAB vuông cân tại O
=>OA=OB
=>\(\left|2m-2\right|=\left|\dfrac{2m-2}{m-3}\right|\)
=>\(\left|2m-2\right|\left(\dfrac{1}{\left|m-3\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}2m-2=0\\m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=4\\m=2\end{matrix}\right.\)
b: Để hai đường song song thì m+1=-2
=>m=-3
c: Gọi A,B lần lượt là giao của (d) với trục Ox và Oy
=>A(-3/m+1;0), B(0;3)
=>OA=3/|m+1|; OB=3
1/2*OA*OB=9
=>9/|m+1|=18
=>|m+1|=1/2
=>m=-1/2 hoặc m=-3/2
a) \(y=\left(1-m\right)x+m+2\left(d\right)\)
\(y=2x-1\left(d'\right)\)
\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)
b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)
\(\Leftrightarrow\left(1-m\right)x+m+2=0\)
\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)
\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)
\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)
\(\Leftrightarrow\left(1-m\right).0+m+2=y\)
\(\Leftrightarrow y=m+2\)
\(\Rightarrow B\left(0;m+2\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)
Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi
\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)
Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)
\(\Rightarrow\left(2\right)\) vô nghiệm
Vậy không có giá trị nào của \(m\) thỏa mãn đề bài