K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c

Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)

18 tháng 4 2016

Từ giả thiết => a = 0 hoặc a = b

* TH1: a = 0

 b(b-c)+c(c-a)=0  <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)

Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0

Vậy a = b = c = 0 => A = 5

* TH2: a = b

 b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c

Vậy a =b=c => A = a3 + a+a3 - 3a3 + 3a2 - 3a + 5

                          = 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4

Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4  

17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2

21 tháng 3 2019

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

EM tham khảo nhé!

21 tháng 3 2019

Thank you chụy

18 tháng 4 2016

$\frac{17}{4}$174  tại a=b=c=$\frac{1}{2}$

18 tháng 4 2016

=1/2 NHÉ

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bài 1: 

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Xét TH $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$

Áp dụng vào bài:

Nếu $a+b+c=0$

$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$

Nếu $a=b=c$

$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$

24 tháng 12 2017

Ta có

( a   +   b ) 3   =   a 3   +   3 a 2 b   +   3 a b 2   +   b 3   =   a 3   +   b 3   +   3 a b ( a   +   b )     = >   a 3   +   b 3   =   ( a   +   b ) 3   –   3 a b ( a   +   b )

 

Từ đó

B   =   a 3   +   b 3   +   c 3   –   3 a b c =   ( a   +   b ) 3   –   3 a b ( a   +   b )   +   c 3   –   3 a b c =   [ ( a + b ) 3   +   c 3 ]   –   3 a b ( a   +   b   + c )       =   ( a   +   b   +   c ) [ ( a   +   b ) 2   –   ( a   +   b ) c   +   c 2 ]   –   3 a b ( a   +   b   +   c )

 

Mà a + b + c = 0 nên

B   =   0 . [ ( a   +   b ) 2   –   ( a   +   b ) c   +   c 2 ]   –   3 a b . 0   =   0

Vậy B = 0

Đáp án cần chọn là: A

22 tháng 1 2017

A=1

chuẩn

15 tháng 7 2023

\(a+b+c=1\) 

\(\Leftrightarrow\left(a+b+c\right)^3=1\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)

\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)'

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)

 Không mất tính tổng quát, giả sử \(a+b=0\), các trường hợp còn lại làm tương tự.

 Khi đó từ \(a+b+c=1\) suy ra \(c=1\) (thỏa mãn). Thế thì \(T=0^{2023}+0^{2023}+1^{2023}=1\)

 Như vậy \(T=1\)

NV
25 tháng 7 2021

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

NV
25 tháng 7 2021

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)