Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b/ Thay x = 25 vào A ta được:
\(A=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)
c/ A = -1/3 \(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\Rightarrow2-\sqrt{x}=3\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
Vậy x = 1/4
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
a) Đk \(x>0\)và \(x\ne4\)
=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2}{\sqrt{x}+2}\)
b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
Vì \(2\left(\sqrt{x}+2\right)>0\)
mà\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)
Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)