K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

Bạn ghi đề nhớ để dấu cho đúng nhé.

\(1.\) Cho  \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)  \(\left(1\right)\)

\(CMR:\)  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                                     \(----------------------\)

Ta có:

Từ  \(\left(1\right)\)  \(\Rightarrow\)  \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)  

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

              \(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)  \(\left(đpcm\right)\)

 

17 tháng 5 2016

a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1

Vay a2011+b2011=2

7 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

9 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

11 tháng 12 2015

a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2 

Vậy ...

13 tháng 3 2018

số ab này bằng 1 hoặc bằng 0 nên a^2011+b^2011 bằng 0 hoặc 1 và tất nhên nó băng mấy cái trên

13 tháng 3 2018

a;b \(\in\){0;1}

TH1: a;b =0

a2011+b2011=0^2011+0^2011=0

TH2: a;b=1

a^2011 + b^2011 = 1 + 1 = 2

11 tháng 3 2016

xét hiệu:

\(\left(a^{2000}+b^{2000}\right)\left(a^{2002}+b^{2002}\right)-\left(a^{2001}+a^{2001}\right)^2=0\)

11 tháng 3 2016

(a^2001 + b^2001).(a+ b) - (a2000 + b2000).ab = a^2002 + b^2002

(a+ b) – ab = 1

(a – 1).(b – 1) = 0

a = 1 hoặc b = 1

Với a = 1 suy ra; b^2000 = b^2001 suy ra; b = 1 hoặc b = 0 (loại)

Với b = 1suy ra; a2000 = a2001 suy ra; a = 1 hoặc a = 0 (loại)

Vậy a = 1; b = 1 suy ra a2011 + b2011 = 2

23 tháng 12 2018

cái này đề bồi dưỡng toán mà

23 tháng 12 2018

\(a^{2002}+b^{2002}=a^{2001}+b^{2001}\)

\(\Leftrightarrow a^{2002}+b^{2002}-b^{2001}-a^{2001}=0\)

\(\Leftrightarrow a^{2001}.\left(a-1\right)+b^{2001}.\left(b-1\right)=0\)

\(\text{vì }a,b>0\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(a^{2001}+b^{2001}=a^{2000}+b^{2000}\)

\(\Leftrightarrow a^{2001}+b^{2001}-a^{2001}-b^{2001}=0\)

\(\Leftrightarrow a^{2000}.\left(a-1\right)+b^{2000}.\left(b-1\right)=0\)

\(\text{vì }a,b>0\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

=> a=b=1

=> \(a^{2019}+b^{2019}=1+1=2\)