Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{a}=\dfrac{y}{b}\\\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\az=cx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\az-cx=0\end{matrix}\right.\)
\(\Leftrightarrow\left(ax-by\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\Leftrightarrow\left(a^2x^2-2axby+b^2y^2\right)+\left(b^2z^2-2bzcy+c^2y^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)=0\)
\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2-\left(a^2x^2+b^2b^2+c^2y^2+2axby+2azcx+2bzcy\right)=0\)
\(\Leftrightarrow x^2\left(a^2+b^2+c^2\right)+y^2\left(a^2+b^2+c^2\right)+z^2\left(a^2+b^2+c^2\right)-\left(ax+ab+cz\right)^2=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
Ta có : \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\) ( theo bđt Bu-nhi-a Cop-xki )
Dấu "=" xảy ra khi \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Vậy nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
Trừ cả 2 vế cho \(a^2x^2+b^2y^2+c^2z^2\), ta có:
\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2z^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)
\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Mà \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
=> đpcm
Giả sử điều cần c/m là đúng . Khi đó , ta có :
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow x^2a^2+y^2a^2+z^2a^2+x^2b^2+y^2b^2+z^2b^2+x^2c^2+y^2c^2+z^2c^2\)
\(=x^2a^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2=2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2-2axby-2bycz-2axcz=0\) \(\Leftrightarrow\left(y^2a^2-2axby+b^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)+\left(x^2c^2-2axcz+a^2z^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\left(1\right)\)
Do \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\\\left(cx-az\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\cx-az=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\cx=az\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Điều này đúng với GT đề bài cho
\(\Rightarrow\) Điều cần c/m là đúng
\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\left(đpcm\right)\)
hơi dài bạn ạ bđt trên đúng theo bunhia vì dấu "=" đúng với điều kiện rồi
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\) và \(VP=\left(ax+by\right)^2\)
tính hiệu của cả VT và VP
suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)
vì \(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)
3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)
biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0
\(\Rightarrow\) Đpcm