Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
Bài này là bài cực khó, phạm vi toán lớp 10 rất khó để giải quyết trọn vẹn bài này nên mình xin phép dùng 1 số kiến thức của lớp 11, có gì khó hiểu thì bạn nhắn cho mình, hoặc nên tự tìm hiểu trên mạng nha !! :))
a) G là trọng tâm tam giác ABC \(\Rightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)
\(P_{G/\left(O\right)}=OG^2-R^2=\left(\overrightarrow{OG}\right)^2-R^2=\frac{1}{9}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)^2-R^2\)
\(=\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)
Vì \(\overrightarrow{OA}^2=OA^2=R^2,\overrightarrow{OB}^2=OB^2=R^2,\overrightarrow{OC}^2=OC^2=R^2\)
nên \(\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2=\frac{3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)
\(=\frac{-6R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}=-\frac{\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2+\left(\overrightarrow{OA}-\overrightarrow{OC}\right)^2+\left(\overrightarrow{OB}-\overrightarrow{OC}\right)^2}{9}\)
\(=-\frac{\overrightarrow{BA}^2+\overrightarrow{CA}^2+\overrightarrow{CB}^2}{9}=-\frac{AB^2+AC^2+BC^2}{9}\)
b) Theo ĐỊNH LÍ EULER: \(OH=3OG\)
Theo câu a: \(9OG^2-9R^2=-AB^2-AC^2-BC^2\)
\(P_{H/\left(O\right)}=OH^2-R^2=9OG^2-9R^2+8R^2=8R^2-AB^2-AC^2-BC^2\)
Có: \(\frac{AB}{sinC}=\frac{BC}{sinA}=\frac{CA}{sinB}=2R\)thế lên trên ta được:
\(8R^2-AB^2-AC^2-BC^2=8R^2-4R^2sin^2C-4R^2sin^2A-4R^2sin^2B\)
\(=4R^2\left(2-sin^2A-sin^2B-sin^2C\right)=4R^2\left(cos^2A+cos^2B+cos^2C-1\right)\)(*)
Xét: \(cos^2A+cos^2B+cos^2C=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
Xét \(cos\left(A+B\right)=cos\left(180^0+C\right)=-cosC\)thế lên trên ta được:
\(1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C=1-cosC.cos\left(A-B\right)-cosC.cos\left(A+B\right)\)
\(1-cosC.\left[cos\left(A+B\right)+cos\left(A-B\right)\right]=1-2cosC.cosA.cos\left(-B\right)\)
Mà \(cos\left(-B\right)=cos\left(B\right)\)nên ta kết luận: \(cos^2A+cos^2B+cos^2C=1-2cosA.cosB.cosC\)
Thế vào (*): \(\Rightarrow P_{H/\left(O\right)}=4R^2\left(1-2cosA.cosB.cosC-1\right)=-8R^2cosA.cosB.cosC\)
Đề hơi sai nha bạn, mà thoi không sao :))
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
\(\left(1\right)2xy\left(x-2y\right)+x-14y=0\)
\(\Leftrightarrow2xy\left(x-2y\right)+\left(x-2y\right)-12y=0\)
\(\Leftrightarrow\left(2xy+1\right)\left(x-2y\right)=12y\)
\(\left(2\right)xy\left(4xy+y+4\right)=y^2\left(2y+5\right)-1\)
\(\Leftrightarrow4x^2y^2+x^2y+4xy=2y^3+5y^2-1\)
\(\Leftrightarrow4x^2y^2+x^2y+4xy-2y^3-5y^2+1=0\)
\(\Leftrightarrow4x^2y^2+8xy+1-4xy+x^2+4y^2+x^2y-x^2-2y^3+2y^2-11y^2=0\)
\(\Leftrightarrow\left(2xy+1\right)^2+\left(x-2y\right)^2+x^2\left(y-1\right)-2y^2\left(y-1\right)=11y^2\)
\(\Leftrightarrow\left(2xy+1\right)^2+\left(x-2y\right)^2+\left(x^2-2y^2\right)\left(y-1\right)=11y^2\)
_ Phân tích được tới đây :)_
@Aki Tsuki
\(\left\{{}\begin{matrix}a^3-\left(a-1\right)^2=6\\\left(b+1\right)^3-b^2=6\end{matrix}\right.\) \(\Rightarrow a^3-\left(b+1\right)^3-\left[\left(a-1\right)^2-b^2\right]=0\)
Từ đoạn này trở đi chắc bạn đặt nhân tử chung được
Đặt \(R\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)
\(\Rightarrow R\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)
\(\Rightarrow R\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+x^2+2\)
Thay lần lượt \(x=4;x=-1\) vào \(P\left(x\right)\) và cộng lại