Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc của dòng nước
y (km/h) là vận tốc riêng của cano. đk: x, y > 0.
vân tốc khi xuối dòng : y + x
vận tốc khi ngược dòng : y - x
*108 / (y + x) + 63 / (y - x) = 7
* 81 / (y + x) + 84 / (y - x) = 7
có thể qui đồng và giải trực tiếp hệ trên. tuy nhiên nếu đặt ẩn phụ thì nhẹ hơn:
đặt u = 1/(y + x); v = 1/(y - x).
ta có hệ pt:
108u + 63v = 7
81u + 84v = 7
=> u =1/27 ; v = 1/21
=> ta có hệ pt:
y + x = 1/u = 27
y - x = 1/v = 21
=> x = 3 km/h; y = 24 km/h
học tốt
Gọi vận tốc xuôi dòng là: a (km/h, a>0)
Gọi vận tốc ngược dòng là: b (km/h, b>0)
Vì ca nô chạy trên sông trong 7 giờ xuôi dòng 108km và ngược dòng 63km
⇒\(\frac{108}{a}+\frac{63}{b}=7\)
Vì ca nô đó cũng chạy 7 giờ, xuôi dòng 81km và ngược dòng 84km
⇒\(\frac{81}{a}+\frac{84}{b}=7\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{108}{a}+\frac{63}{b}=7\\\frac{81}{a}+\frac{84}{b}=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=27\\b=21\end{cases}}\)
Ta có vận tốc xuôi dòng: Vca nô + Vdòng nước =27
Vận tốc ngược dòng: Vca nô − Vdòng nước = 21,
⇒ Vdòng nước = (27−21):2=3km/hvdòng nước=(27−21):2=3km/h
Vca nô=27−3=24km/h
Vậy vận tốc dòng nước chảy là 3km/h, vận tốc riêng của ca nô là 24km/h.
Vận tốc cano khi xuôi dòng là x+y (km/h) và vận tốc cano khi ngược dòng là x-y(km/h)
( Trong đó x và y lần lượt là vận tốc cano và vận tốc dòng nước )
Theo đề bài ta có: \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\left(1\right)\) (cả xuôi cả về hết 7h)
Tương tự ta cũng có: \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)
từ (1) và (2) Ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)
Đặt 1/x+y = a và 1/x-y = b
hệ viết lại thành: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{x+y}=\dfrac{1}{27}\\b=\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)
Vậy......
Gọi tốc độ của ca nô khi dòng nước đứng yên là x (km/h) và tốc độ dòng nước là y (km/h).
Khi đó vận tốc của ca nô khi xuôi dòng là x+y(km/h) và tốc độ của ca nô khi ngược dòng là x–y(km/h)
Lần thứ nhất:
Thời gian ca nô xuôi dòng là \(\dfrac{108}{x+y}\left(h\right)\)
Thời gian ca nô ngược dòng là \(\dfrac{63}{x-y}\left(h\right)\)
Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\) (1)
Lần thứ hai:
Thời gian ca nô xuôi dòng là \(\dfrac{81}{x+y}\)(h)
Thời gian ca nô ngược dòng là \(\dfrac{84}{x-y}\left(h\right)\)
Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:=> \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)
Đặt \(a=\dfrac{1}{x+y};b=\dfrac{1}{x-y}\) \(\left(x,y\ne0\right)\)
Ta có: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+4=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{27}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{27}\\\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-y-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-2y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)
Vậy tốc độ của ca nô khi dòng nước đứng yên là 24km/h và tốc độ của dòng nước là 3km/h.
Gọi x (km/h) là vận tốc của dòng nước
y (km/h) là vận tốc riêng của cano. đk: x, y > 0.
vân tốc khi xuối dòng : y + x
vận tốc khi ngược dòng : y - x
*108 / (y + x) + 63 / (y - x) = 7
* 81 / (y + x) + 84 / (y - x) = 7
có thể qui đồng và giải trực tiếp hệ trên. tuy nhiên nếu đặt ẩn phụ thì nhẹ hơn:
đặt u = 1/(y + x); v = 1/(y - x).
ta có hệ pt:
108u + 63v = 7
81u + 84v = 7
=> u =1/27 ; v = 1/21
=> ta có hệ pt:
y + x = 1/u = 27
y - x = 1/v = 21
=> x = 3 km/h; y = 24 km/h
Gọi x (km/h) là vận tốc của dòng nước
y (km/h) là vận tốc riêng của cano. đk: x, y > 0.
vân tốc khi xuối dòng : y + x
vận tốc khi ngược dòng : y - x
*108 / (y + x) + 63 / (y - x) = 7
* 81 / (y + x) + 84 / (y - x) = 7
có thể qui đồng và giải trực tiếp hệ trên. tuy nhiên nếu đặt ẩn phụ thì nhẹ hơn:
đặt u = 1/(y + x); v = 1/(y - x).
ta có hệ pt:
108u + 63v = 7
81u + 84v = 7
=> u =1/27 ; v = 1/21
=> ta có hệ pt:
y + x = 1/u = 27
y - x = 1/v = 21
=> x = 3 km/h; y = 24 km/h
Đáp án:vận tốc ca nô là 43 km/h và vận tốc nước là 3 km/h
Giải thích các bước giải:
Gọi vận tốc xuôi dòng của ca nô là x (km/h) và ngược dòng là y (km/h)
(x>y>0)
1 giờ rưỡi= 1,5 giờ
Ta có hệ pt:
{1.x+2.y=1261,5x+1,5y=129⇒{x=46(km/h)y=40(km/h){1.x+2.y=1261,5x+1,5y=129⇒{x=46(km/h)y=40(km/h)
Ta có x=ca nô + nước; y= ca nô - nước
=> vận tốc riêng của ca nô là: x+y2=43(km/h)x+y2=43(km/h)
Vận tốc dòng nước là 3 km/h
Bài 15:
Gọi x(hộp bánh) và y(hộp bánh) lần lượt là số hộp bánh mà người thứ nhất và người thứ hai phải đóng được(Điều kiện: \(x,y\in Z^+\))
Vì theo kế hoạch hai người phải đóng được 800 hộp bánh nên ta có phương trình:
x+y=800(1)
Số hộp bánh người thứ nhất đóng được khi vượt mức 20% là:
\(x+\dfrac{1}{5}x=\dfrac{6}{5}x\)
Số hộp bánh người thứ hai đóng được khi vượt mức 15% là:
\(y+\dfrac{3}{20}y=\dfrac{23}{20}y\)
Theo đề, ta có: \(\dfrac{6}{5}x+\dfrac{23}{20}y=945\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=800\\\dfrac{6}{5}x+\dfrac{23}{20}y=945\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{5}x+\dfrac{6}{5}y=960\\\dfrac{6}{5}x+\dfrac{23}{20}y=945\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{20}y=15\\x+y=800\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15:\dfrac{1}{20}=300\\x=800-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=800-300\\y=300\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=500\\y=300\end{matrix}\right.\)(thỏa ĐK)
Vậy: Theo kế hoạch, người thứ nhất phải đóng 500 hộp bánh
Theo kế hoạch, người thứ hai phải đóng 300 hộp bánh
Gọi vận tố cano là x (km/h) (x>y>0)
Vận tốc dòng nước là y (km/h)
Vận tốc cano khi xuôi dòng là x+y (km/h)
Vận tốc cano khi ngược dòng là x-y (km/h)
Thời gian cano đi khi xuôi dòng lần đầu là \(\frac{108}{x+y}\)(h)
Thời gian cano đi khi ngược dòng lần đầu là \(\frac{63}{x-y}\)(h)
Theo đề bài ta có PT : \(\frac{108}{x+y}+\frac{63}{x-y}=7\) (1)
Thời gian cano đi khi xuôi dòng lần 2 là \(\frac{81}{x+y}\)(h)
Thời gian cano đi khi ngược dòng lần 2 là \(\frac{84}{x-y}\)(h)
Theo đề bài ta có PT: \(\frac{81}{x+y}+\frac{84}{x-y}=7\) (2)
Từ (1) và (2) ta có hệ PT :
\(\frac{108}{x+y}+\frac{63}{x-y}=7\)
\(\frac{81}{x+y}+\frac{84}{x-y}=7\)
Tự giải tiếp nha. Giải = cách đặt ẩn phụ rồi thay vào là OK
Gọi vt dòng nc là x ; vận tốc thực của cano là y ( km / h ) ; ĐK y > x > 0
cano đi ngược dòng với vận tốc là x - y
cano đi xuôi dòng với vận tốc x + y
Theo bài ra ta có hpt :
\(\frac{108}{x+y}+\frac{61}{x-y}=7\) .
\(\frac{81}{x+y}+\frac{84}{x-y}=7\)
Đặt \(\frac{1}{x+y}=a;\frac{1}{x-y}=b\)
thay vào giải hệ
- Gọi vận tốc của ca nô là x ( km/h , x > 0 )
- Gọi vận tốc của dòng nước là y ( km/h, y > 0 )
- Vận tốc của ca nô khi xuôi dòng là : x + y ( km/h )
- Vận tốc của ca nô khi ngược dòng là : x - y ( km/h )
- Thời gian ca nô xuôi dòng trong 108 km là : \(\frac{108}{x+y}\) ( giờ )
- Thời gian ca nô ngược dòng trong 63 km là : \(\frac{63}{x-y}\) ( giờ )
Theo đề bài tổng thời gian xuôi dòng trong 108 km và ngược dòng trong 53 km là 7 giờ nên ta có phương trình : \(\frac{108}{x+y}+\frac{63}{x-y}=7\) ( I )
- Thời gian ca nô xuôi dòng trong 81 km là : \(\frac{81}{x+y}\) ( giờ )
- Thời gian ca nô xuôi dòng trong 84 km là : \(\frac{84}{x-y}\) ( giờ )
Theo đề bài tổng thời gian xuôi dòng trong 81 km và ngược dòng trong 84 km là 7 giờ nên ta có phương trình : \(\frac{81}{x+y}+\frac{84}{x-y}=7\) ( II )
Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}\frac{108}{x+y}+\frac{63}{x-y}=7\\\frac{81}{x+y}+\frac{84}{x-y}=7\end{matrix}\right.\)
- Đặt \(\frac{1}{x+y}=a,\frac{1}{x-y}=b\) ta được hệ phương trình :\(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}108a+63b=7\\27a-21b=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}108\left(\frac{21b}{27}\right)+63b=7\\a=\frac{21b}{27}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=\frac{1}{21}\\a=\frac{21\left(\frac{1}{21}\right)}{27}=\frac{1}{27}\end{matrix}\right.\)
- Thay lại\(\frac{1}{x+y}=a,\frac{1}{x-y}=b\) ta được hệ phương trình : \(\left\{{}\begin{matrix}\frac{1}{x-y}=\frac{1}{21}\\\frac{1}{x+y}=\frac{1}{27}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}21+y+y=27\\x=21+y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=2\\x=21+2=23\end{matrix}\right.\) ( TM )
Vậy vận tốc thật của ca nô là 23km/h và dòng nước là 2km/h .
Best giữ @@