Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/3 + 1/4 +.......+1/48 + 1/49 + 1/50
1/2 = 1 - 1/2 =1/3
1/3 = 1 - 2/3
cho nên các phân số ở giữa đều bị mất vậy chỉ còn số đầu và số cuối
ta có 1 -1/50 = 49/50
\(A=\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)....\left(1-\frac{1}{99}\right)\)
\(A=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{98}{99}\)'
Ta gạch các chữ số giống nhau ở tử số và mẫu số
Mà ta thấy mẫu số phân số sau là tử số phân số trước
Vậy chỉ còn 2 ở tử số và 99 ở mẫu số
Vậy \(A=\frac{2}{99}\)
A = ( 1 - 1/3 ) x ( 1 - 1/4 ) x ( 1 - 1/5 ) x ... x ( 1 - 1/99 )
A = 2/3 x 3/4 x 4/5 x ... x 98/99
A = \(\frac{2\cdot3\cdot4\cdot...\cdot98}{3\cdot4\cdot5\cdot...\cdot99}\)
A = 2/99 ( vì mk gạch những số có cả ở tử và mẫu )
(x+1/2)+(x+1/4)+(x+1/8)+(x+1/6)=1
(x+x+x+x)+(1/2+1/4+1/6+1/8)=1
4x+(12/24+6/24+4/24+3/24)=1
4x+25/24=1
4x=1-25/24
4x=-1/24
x=-1/24:4
x=-1/96
\(\frac{96}{97}\). \(\frac{97}{98}\)....\(\frac{999}{1000}\)=\(\frac{96.97...999=96.1...}{97.98...1000=1.1...1000}\)=\(\frac{96}{1000}\)=\(\frac{12}{125}\)
Tù đó ta sẽ viết được phân số: 1/2*2/3*3/4*4/5*......*2006/2007 và sẽ bằng 1/2007