Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko bt tiếng trung quốc
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
II. Cách nhận biết câu trả lời đúng
Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:
1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)
2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)
3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.
4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.
5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)
6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.
III. Thưởng VIP cho các thành viên tích cực
Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng thẻ cào 50.000đ hoặc 2 tháng VIP cho 6 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.
Tôi để hai chữ " Tôn Tử " trong dấu ngoặc kép, vì tôi không có tài liệu nào trong tay để quyết đoán bài thơ " Điểm Binh " trên là của Tôn Tử.
(Ý bài nầy là " Tôn Tử " biết chừng chừng số binh của mình. Muốn biết số binh chính xác, thì :
- Làm dấu hiệu thứ nhất - như phất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người ; số nầy sẽ nhân với 70.
- Làm dấu hiệu thứ hai, thì cứ 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3 hoặc 4 người ; số nầy sẽ nhân cho 21.
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3, 4, 5 hoặc 6 người ; số nầy sẽ nhân cho 15.
Cọng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cọng thêm, hoặc trừ ra 105, để được số binh chính xác.).
Ví dụ : Số binh là 437, và " Tôn Tử " biết chừng chừng là khoảng 400.
- Nếu sắp 3 người thành một nhóm, thì lẻ ra 2 người,
- Nếu sắp 5 người thành một nhóm, thì lẻ ra 2 người,
- Nếu sắp 7 người thành một nhóm, thì lẻ ra 3 người.
Và : (2 x 70) + (2 x 21) + (3 x 15) + 105 + 105 = (140 + 42 + 45) + 210 = 227 + 210 = 437.
Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài ba phút mà " Tôn Tử " đã biết được số binh chính xác của mình.
Chuyện bài toán trên là Phép Chia Euclide (1) về Số Học trong Tập Hợp Số Nguyên Z. Vậy ta có thể thay những số 3, 5, 7; 70, 21, 15; 105, trên, bằng những nhóm số khác như 2, 3, 5; 15, 10, 6; 30; hay 3, 5, 11; 55, 66, 45; 165 ; vân vân, nhưng theo tôi nhóm số 3, 5, 7; 70, 21, 15; 105 trên vẫn đơn giản hơn nhiều.
Ví dụ với nhóm số 2, 3, 5; 15, 10, 6; 30 :
Cũng lấy số binh trên 437.
- Nếu xếp 2 người thành một nhóm, thì lẻ ra 1 người,
- Nếu xếp 3 người thành một nhóm, thì lẻ ra 2 người,
- Nếu xếp 5 người thành một nhóm, thì lẻ ra 2 người.
Và (1 x 15) + (2 x 10) + (2 x 6) + (13 x 30) = (15 + 20 + 12) + 390 = 47 + 390 = 437.
Ở đây 47 phải cọng thêm 13 lần 30, (13 x 30 = 390).
( Ý bài này là " Tôn Tử" biết chừng chừng số binh của mình . Muốn biết sô chính xác thì:
- Làm dấu hiệu thứ nhất - như phất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người, số này sẽ nhân với 70.
- Làm dấu hiệu thứ 2 thì cư 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0,1,2,3 hoặc 4 người, số này sẽ nhân với 21
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0,1,2,3,4,5 hoặc 6 người, số này sẽ nhân cho 15
Cộng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cộng thêm, hoặc trừ ra 105, để được số bình chính xác )
Ví dụ: số bình là 437 và " tôn tử" biết chừng chừng là khoảng 400
- Nếu 3 người thanhg một nhóm, thì lẻ ra 2 người
- Nếu 5 người thành một nhóm thì lẻ ra 2 người
- Nếu 7 người thành một nhóm thi lẻ ra 3 người
Và : ( 2 x 70) + ( 2 x 21 )+ ( 3 x 15 )+ 105 + 105 = ( 140+ 42+ 45 ) + 210 = 227 + 210 = 437
Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài 3 phút mà " Tốn tử" đã biết được số bình chính xác của mình
Truyện bài toán trên là phép chia Euclile ( 1 ) về số học trong tập hợp sô nguyên Z. Vậy ta có thể thay những số 3;5;7;70;21;15;105 trên bằng những nhóm sốkhác như 2;3;5;6;10;30 hay 3;5;11;56;45;165, van vân những theo tôi nhóm số 3;5;7;70;21;15
; 105 trên vẫn đơn giản hơn nhiều
Ví dụ nhóm số : 2;3;5;15;10;6;30
cũng lấu số binh trên 437.
- Nếu xêp 2 người thành một nhóm thì lẻ ra 1 người
- Nếu xếp 3 người vào một nhóm thì lẻ ra 2 người
- nếu xếp 5 người vào một nhóm thì lẻ ra 2 người
và (1x15)+(2x10)+( 2x6)+(3x30) = (15+20+12) + 390 =47 +390 = 437
ở đây 437 phải cộng thêm 3 lần 30, ( ở đây 13x30=390)
(Ý bài nầy là " Tôn Tử " biết chừng chừng số binh của mình. Muốn biết số binh chính xác, thì :
- Làm dấu hiệu thứ nhất - như phất một lần cây cờ - thì cứ 3 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1 hoặc 2 người ; số nầy sẽ nhân với 70.
- Làm dấu hiệu thứ hai, thì cứ 5 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3 hoặc 4 người ; số nầy sẽ nhân cho 21.
- Làm dấu hiệu thứ ba, thì cứ 7 người lính đứng lại thành một nhóm, số lính còn lại không lập được một nhóm là 0, 1, 2, 3, 4, 5 hoặc 6 người ; số nầy sẽ nhân cho 15.
Cọng tất cả 3 số vừa được nhân ở trên, và nếu cần thì cọng thêm, hoặc trừ ra 105, để được số binh chính xác.).
Ví dụ : Số binh là 437, và " Tôn Tử " biết chừng chừng là khoảng 400.
- Nếu sắp 3 người thành một nhóm, thì lẻ ra 2 người,
- Nếu sắp 5 người thành một nhóm, thì lẻ ra 2 người,
- Nếu sắp 7 người thành một nhóm, thì lẻ ra 3 người.
Và : (2 x 70) + (2 x 21) + (3 x 15) + 105 + 105 = (140 + 42 + 45) + 210 = 227 + 210 = 437.
Cái hay ở đây là chỉ dùng có 3 động tác đơn sơ và chỉ trong vài ba phút mà " Tôn Tử " đã biết được số binh chính xác của mình.
Chuyện bài toán trên là Phép Chia Euclide (1) về Số Học trong Tập Hợp Số Nguyên Z. Vậy ta có thể thay những số 3, 5, 7; 70, 21, 15; 105, trên, bằng những nhóm số khác như 2, 3, 5; 15, 10, 6; 30; hay 3, 5, 11; 55, 66, 45; 165 ; vân vân, nhưng theo tôi nhóm số 3, 5, 7; 70, 21, 15; 105 trên vẫn đơn giản hơn nhiều.
Ví dụ với nhóm số 2, 3, 5; 15, 10, 6; 30 :
Cũng lấy số binh trên 437.
- Nếu xếp 2 người thành một nhóm, thì lẻ ra 1 người,
- Nếu xếp 3 người thành một nhóm, thì lẻ ra 2 người,
- Nếu xếp 5 người thành một nhóm, thì lẻ ra 2 người.
Và (1 x 15) + (2 x 10) + (2 x 6) + (13 x 30) = (15 + 20 + 12) + 390 = 47 + 390 = 437.
Ở đây 47 phải cọng thêm 13 lần 30, (13 x 30 = 390).
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
j vay ban, sao ban viet chu chung quoc
I'm from China