Cho a, b, c > 0 thỏa mãn (a + b)(a + c) = 8. Tìm GTLN của C = abc(a + b + c).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x,y\ne0\)
Đặt \(\frac{1}{x}=a\), \(\frac{1}{y}=b\), khi đó hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4a+9b=\frac{11}{7}\\4a+6b=\frac{26}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6b}{4}\\4a+9b-4a-6b=\frac{11}{7}-\frac{26}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6b}{4}\\3b=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6.\frac{1}{9}}{4}=\frac{1}{7}\\b=\frac{1}{9}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{7}\\\frac{1}{y}=\frac{1}{9}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=9\end{cases}}\left(nhận\right)\)
Vậy hệ phương trình đã cho có nghiệm là \(\left(7;9\right)\)
Answer:
\(B=\frac{\cos^2a-3\sin^2a}{3-\sin^2a}\)
Có:
\(\tan a=3\)
\(\Leftrightarrow\frac{\sin a}{\cos a}=3\)
\(\Leftrightarrow\sin a=3\cos a\)
Thay vào B
\(B=\frac{\cos^2a-3\left(3\cos a\right)^2}{3\left(\sin^2a+\cos^2a\right)-\left(3\cos a\right)^2}\)
\(=\frac{\cos^2a-27\cos^2a}{3\left(3\cos a\right)^2+3\cos^2a-9\cos^2a}\)
\(=\frac{-26\cos^2a}{21\cos^2a}\)
\(=-\frac{26}{21}\)