Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x²y + xy² - x - y
= (x²y + xy²) - (x + y)
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
a) Ta tính tổng số các cặp lớp phân biệt có thể xảy ra.
Vị trí đầu tiên có \(x\) cách chọn và vị trí thứ hai sẽ có \(x-1\) cách chọn (do một lớp bất kì không thể đấu với chính lớp đó). Nhưng nếu tính như trên, thì mỗi trận đấu giữa 2 đội bất kì sẽ bị lặp lại thêm 1 lần, nên tổng số trận đấu khác nhau là \(\dfrac{x\left(x-1\right)}{2}\)
b) Cho \(\dfrac{x\left(x-1\right)}{2}=105\)
\(\Leftrightarrow x^2-x-210=0\)
\(\Leftrightarrow\left(x-21\right)\left(x+20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=21\left(nhận\right)\\x=-20\left(loại\right)\end{matrix}\right.\)
Vậy có 21 đội tham gia.
Với \(x\ne0;x\ne\pm1;x\ne\dfrac{5}{2}\), ta có:
\(M=\left(\dfrac{3}{x-1}-\dfrac{7}{x+1}\right):\dfrac{-4x+10}{x\left(x+1\right)}\)
\(=\left[\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{7\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{x\left(x+1\right)}{-4x+10}\)
\(=\dfrac{3x+3-7x+7}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x+1\right)}{-4x+10}\)
\(=\dfrac{-4x+10}{x-1}\cdot\dfrac{x}{-4x+10}\)
\(=\dfrac{x}{x-1}\)
\(Toru\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
a) ĐKXĐ: x\(\ne\)0, x\(\ne\)2
Ta có:
A= 2x-4/ x2- 2x = 2(x-2)/ x(x-2) = 2/x
Vậy...
b) Ta thấy x=26 thỏa mãn ĐKXĐ
Thay x=26 vào bt A ta được
A= 2/26 = 1/13
Vậy....
c) Với x\(\ne\)0, x\(\ne\)2 ta có A=12 \(\Leftrightarrow\) 2/x =12 \(\Leftrightarrow\) x=1/6
Vậy....
\(x^2\) - 8\(x\) + 19
= (\(x^2\) -2.\(x\) . 4 + 42) + 3
= (\(x\) - 4)2 + 3
Vì (\(x\) - 4)2 ≥ 0 ∀ \(x\) ⇒ (\(x\) - 4)2 + 3 ≥ 3 dấu bằng xảy ra khi
\(x\) - 4 = 0 ⇒ \(x\) = 4
Vậy giá trị nhỏ nhất của \(x^2\) - 8\(x\) + 19 là 3 xảy ra .khi \(x\) = 4
Q = x^2 + 8x + 20
= (x^2 + 8x + 16) + 4
= (x+4)^2 + 4 ≥ 4 với mọi x
Dấu = xảy ra khi :
x+4=0 hay x = -4
VẬY MIN Q = 4 tại x = -4
Q = x2+ 8x + 20
= x2+ 2.4.x + 16+ 4
= (x+4)2+4
Vì (x+4)2 \(\ge\) 0 với mọi x \(\Rightarrow\) (x+4)2+ 4\(\ge\) 0+4
hay Q\(\ge\) 4
Dấu "=" xảy ra \(\Leftrightarrow\) (x+4)2=0 \(\Leftrightarrow\) x+4=0 \(\Leftrightarrow\) x= -4
Vậy Q đạt giá trị nhỏ nhất khi x= -4