a,b>0 thỏa \(\left(a+b\right)^3+4ab\le12\):
cm:\(\frac{1}{1+a}+\frac{1}{1+b}+2015ab\le2016\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Bị làm sao vậy?Chúc người ta ngủ ngon rồi lại kêu giải toán?Bị bệnh gì thế hả bạn?
dễ bạn nào muốn biết chỉ cần 3 cái là xong
yên tâm tớ không câu đâu
câu tớ là con chó
Vì dây AB = BC= CD => các góc AOB = BOC = COD = 180:3 =60 .
Gọi H là đường cao kẻ từ M tới cạnh BD
Ta có OBD = ODB => OH vuông góc với BD (1)
Mà C là điểm chính giữa cung BC => CH vuông góc với BD (2)
Vì M là giao điểm của hai tiếp tuyến nên theo t/c hai tiếp tuyến cắt nhau ta có MB = MD
=> MH vuông góc với BD (3)
Từ 1 2 3 => OH //CH//MH có H chung => O,C,M thẳng hàng( mình nghĩ là đung nhưng lập luận của mình thật sự không logic)
b.Theo câu a ta tính được góc HDO = 30
SinHDO =0H/OD => OH =sin30.OD =1/2.R =R/2
Theo py ta go tính được BH = căn( R^2-(R/2)^2)=(R căn 3)/2
sin DMO = OD/MO => MO = OD/sin 30 = 2R => MH =MO-OH= 2R- R/2=3R/2
BD = 2BH =2 (Rcăn 3)/2 =căn3R
=> SMBD = (MH.BD)/2= (3R./2.căn3R)/2=(3căn3r^2)/4 (đvdt)
Ta có: \(12\ge\left(a+b\right)^3+4ab\ge a^3+b^3+3ab\left(a+b\right)+4ab\)
\(\ge4ab\left(a+b\right)+4ab\ge8\sqrt{a^3b^3}+4ab\)
\(\Leftrightarrow3\ge2\sqrt{a^3b^3}+ab\Leftrightarrow\left(\sqrt{ab}-1\right)\left(2ab+2\sqrt{ab}+3\right)\le0\)
\(\Leftrightarrow ab\le1\). Ta có BĐT \(\frac{1}{1+a}+\frac{1}{1+b}\le\frac{2}{1+\sqrt{ab}}\)
\(\Leftrightarrow\frac{\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+1\right)\left(b+1\right)\left(1+\sqrt{ab}\right)}\le0\) đúng với \(ab\le1\)
Áp dụng BĐT vừa c/m trên ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+2015ab\le\frac{2}{1+\sqrt{ab}}+2015ab\)
Cần chứng minh \(\frac{2}{1+\sqrt{ab}}+2015ab\le2016\)
\(\Leftrightarrow2015\sqrt{ab}\left(ab-1\right)+\sqrt{ab}\left(\sqrt{ab}-1\right)+2014ab\le2014\) ( luôn đúng do \(ab\le1\))
Đẳng thức xảy ra khi \(a=b=1\)