Hotgirl và hotboy đâu kb đj
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(\sqrt{x+2}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
suy ra \(\left(\sqrt{x+2}-\sqrt{x-2}\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x=10}\right)=3\left(\sqrt{x+2}+\sqrt{x-2}\right)\)
\(4\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\left(\sqrt{x+2}+\sqrt{x-2}\right)\)
Rồi sau đó bình phương 2 vế và rút gọn nha bạn
Ta có: \(x=\sqrt{\frac{\sqrt{3}-x}{\sqrt{3}+x}}\)
\(x^2=\frac{\sqrt{3}-x}{\sqrt{3}+x}\)
\(x^2\left(\sqrt{3}+x\right)=\sqrt{3}-x\)
\(x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
(Bạn tự nhẩm nghiệm nha, mk quên cách nhậm nghiệm hộ mình)
\(\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
đặt a=x(x+1);b=y(y+1)
\(\Leftrightarrow\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)
bài này dễ mà bạn
có\(\hept{\begin{cases}x+y+x^2+y^2=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
suy ra \(\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)
sau đó bạn Đặt a=x(x+1); b=y(y+1)
phương trình trở thành\(\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)
dễ dàng giải dc a=6 ; b=2 nha
ra a va b rồi bạn tự tìm x và y nha
nhớ k đúng nha
\(\Leftrightarrow\hept{\begin{cases}x^3-y^3-3x+3y=0\\x^6+y^6=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)=0\\x^6+y^6=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\\x^6+y^6=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\x^2+xy+y^2-3=0\\x^6+y^6=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\y^2+y.y+y^2-3=0\\y^6+y^6=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\y\approx0,71\end{cases}}\)
a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.