K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

a)Vì hai số không âm x,y thỏa mãn:\(x^2+y^2=1\)nên \(x\le1,y\le1\)Nên ta có:

\(x^3\le x^2;y^3\le y^2\)

\(\Rightarrow x^3+y^3\le x^2+y^2=1\)

Vậy Max=1

b)Áp dụng bunhiacopxki ta có:

\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)

\(\left(x+y\right)\left(x^3+y^3\right)=\left(\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{x^3}^2+\sqrt{y^3}^2\right)\right)\)\(\ge\left(x^2+y^2\right)^2=1\)

\(\Rightarrow x^3+y^3\ge\frac{1}{x+y}\ge\frac{1}{\sqrt{2}}\)

3 tháng 12 2017

ta có:\(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\ge\frac{3}{4}\left(a+b\right)^2\)

hay \(\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)

tương tự ta có:\(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}}{2}\left(b+c\right),\sqrt{c^2+ac+c^2}\ge\frac{\sqrt{3}}{2}\left(a+c\right)\)

đến đây tự full đi

3 tháng 12 2017

jjjjjjjjjjjjjjjjjjjj

3 tháng 12 2017

BN đếm hết tóc trên đầu bn , bn sẽ biết có bao nhiêu vì sao trên trời. k cho mk nhé

3 tháng 12 2017

nhiều lắm

12 tháng 6 2020

Theo BĐT Bunyakovsky, ta có: \(\frac{7}{2a+b+c}=\frac{7^2}{7\left(2a+b+c\right)}=\frac{\left(2+1+4\right)^2}{2\left(a+3b\right)+\left(b+3c\right)+4\left(c+3a\right)}\)

\(\le\frac{2^2}{2\left(a+3b\right)}+\frac{1^2}{\left(b+3c\right)}+\frac{4^2}{4\left(c+3a\right)}\)

\(=\frac{2}{a+3b}+\frac{1}{b+3c}+\frac{4}{c+3a}\)(1)

Hoàn toàn tương tự: \(\frac{7}{2b+c+a}\le\frac{2}{b+3c}+\frac{1}{c+3a}+\frac{4}{a+3b}\)(2); \(\frac{7}{2c+a+b}\le\frac{2}{c+3a}+\frac{1}{a+3b}+\frac{4}{b+3c}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(7\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\le7\left(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\right)\)

hay \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c

3 tháng 12 2017

Áp dụng bđt 1/a+1/b >= 4/a+b

Xét 1/a+3b + 1/b+2c+a >= 4/2a+4b+2c = 2/a+2b+c

Tương tự : 1/b+3c + 1/c+2a+b >= 4/2a+2b+4c = 2/a+b+2c

1/c+3a + 1/a+2b+c >= 4/4a+2b+2c = 2/2a+b+c

=> VT + VP >= 2VP

=> VT >= VP ( ĐPCM)

k mk nha

3 tháng 12 2017

kb nha

3 tháng 12 2017

bạn vô trang rồi kick kết bạn với mình nha