K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6

Hiện tại lớp 1B có số hs là:

20 - 5 = 15 (hs) 

ĐS: ... 

26 tháng 6

Do 20 học sinh của lớp 1B chưa xác định cụ thể là có bao nhiêu học sinh nam và bao nhiêu học sinh nữ tronh đó. Hơn nữa số học sinh  chuyển đi có bao nhiêu bạn  là nam bao nhiêu bạn là nữ cũng chưa có số liệu cụ thể. Vậy trong lớp 1 B giờ có bao nhiêu học sinh nam là không thể xác định em nhé!

\(82413\simeq82400\)

\(9482601\simeq9482600\)

\(76501589\simeq76501600\)

\(124378655\simeq124378700\)

\(987725\simeq987700\)

b: 34;45

Quy luật: Số sau bằng số trước cộng với (khoảng cách giữa số trước và số trước nó cộng thêm 2 đơn vị)

 

\(x:3\times24-x:9\times18+x:6\times24=54\)

=>\(8\times x-2\times x+4\times x=54\)

=>\(10\times x=54\)

=>x=54:10=5,4

26 tháng 6

Giúp mình với ạ :))

a: \(2xy+x-y+xy^2+2xy\)

\(=x-y+xy^2+\left(2xy+2xy\right)\)

\(=x-y+xy^2+4xy\)

b: \(5xy^2+4y-4x\cdot2y^2\)

\(=4y+5xy^2-8xy^2\)

\(=4x-3xy^2\)

c: \(\sqrt{25}+\sqrt{36}+\sqrt{49}+...+\sqrt{100}\)

=5+6+7+8+9+10

=15+15+15

=45

d: Đặt \(A=1+4+9+16+...+9801+10000\)

Đặt \(B=1+8+27+...+729+1000\)

 \(A=1+4+9+...+10000\)

\(=1^2+2^2+...+100^2\)

\(=\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)

\(=\dfrac{100\cdot101\cdot201}{6}\)

\(B=1+8+27+...+1000\)

\(=1^3+2^3+...+10^3=\left(1+2+...+10\right)^2\)

\(=55^2\)

=>\(A-B=\dfrac{100\cdot101\cdot201}{6}-55^2=335325\)

26 tháng 6

\(\dfrac{A+C+E}{3}\) + \(\dfrac{A+B+D}{3}\) = 40 + 28

\(\dfrac{2A}{3}\)+\(\dfrac{B+C+E+D}{3}\)= 68

\(\dfrac{2A}{3}\)+ 33 = 68

\(\dfrac{2A}{3}\)=35

2A = 35 X 3

2A = 105

A =\(\dfrac{105}{2}\)

 

26 tháng 6

Từ (1) \(\Rightarrow A+C+E=40\cdot3=120\)

Từ (2) \(\Rightarrow A+B+D=28\cdot3=84\)

Từ (3) \(\Rightarrow B+C+D+E=33\cdot3=99\)

Suy ra:

\(\left(A+C+E+A+B+D\right)-\left(B+C+D+E\right)=\left(120+84\right)-99\)

\(2A+\left(B+C+D+E\right)-\left(B+C+D+E\right)=105\)

\(2A=105\)

\(A=52,5\)

Vậy \(A=52,5\)

 

b: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(A< 1-\dfrac{1}{100}\)

=>A<1

=>0<A<1

=>A không là số tự nhiên

a: \(A=1+4+9+...+10000\)

\(=1^2+2^2+...+100^2\)

\(=\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)

\(=\dfrac{100\cdot101\cdot201}{6}\)

\(B=1+8+27+...+1000\)

\(=1^3+2^3+...+10^3=\left(1+2+...+10\right)^2\)

\(=55^2\)

=>\(A-B=\dfrac{100\cdot101\cdot201}{6}-55^2=335325\)

2 lần số vở của Cường là:

30+15+3x3=45+9=54(quyển)

Số vở của Cường là:

54:2=27(quyển)

26 tháng 6

Hai Trung bình cộng số quyển vở của ba bạn là :

30 + 15 + 3 = 48 ( quyển vở)

Trung bình cộng số quyển vở của ba bạn là :

48 : 2 = 24 ( quyển vở)

Số quyển vở của bạn Cường có là:

24 + 3 = 27 ( quyển vở)

Đáp số : 27 quyển vở

26 tháng 6

A = 12 + 22 + 32 + ... + 1002

A = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 100 x (99 + 1)

A = 1 + 2 x 1 + 2 + 3 x 2 + 3 + ... + 100 x 99 + 100

A = (1 + 2 + 3 + ... + 100) + (1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100)

Ta gọi biểu thức: 1 + 2 + 3 + ... + 100 = C

                            1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = D

C = (1 + 100) x 100 : 2 = 5 050 

D = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100

3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3

3D = 1 x 2 x 3 + 2 x 3 x (4 - 1) +...+ 99 x 100 x (101 - 98)

3D = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 +... - 99 x 100 x 98

3D =  98 x 99 x 100

3D = 970 200

D = 970 200 : 3

D = 323 400

A = 5 050 + 323 400 = 328 450

B = 13 + 23 + 33 + ... + 503

B = 1 + 2 x ( 22) + 3 x (32) + ... + 50 x (502)

B = 1 + 22 x (1 + 1) + 32 x (2 + 1) + ... + 502 x (49 + 1)

B = 12 + 1 x 22 + 22 + 2 x 32 + 32 + ... + 49 x 502 + 502

B = (12 + 22 + 32 + ... + 502) + (1 x 22 + 2 x 32 + ... + 49 x 502)

Đặt biểu thức: 12 + 2+ 32 + ... + 50= E

E = 1 + 2 x (1 + 1) + 3 x (2 + 1) + ... + 50 x (49 + 1)

E = 1 + 1 x 2 + 2 + 3 x 2 + 3 + ... + 50 x 49 + 50

E = (1 + 2 + 3 + ... + 50) + (1 x 2 + 2 x 3 + ... + 49 x 50)

Đặt biểu thức: 1 + 2 + 3 + ... + 50 = F

                        1 x 2 + 2 x 3 + ... + 49 x 50 = G

F = (1 + 50) x 50 : 2 = 1275

3G = 1 x 2 x 3 + 2 x 3 x 3 + ... + 49 x 50 x 3

3G = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ... + 49 x 50 x (51 - 48)

3G = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 1 + ... + 49 x 50 x 51 - 49 x 50 x 48

3G = 49 x 50 x 51

3G = 124950

G = 124950 : 3 = 41650

B = 41650 + 1275 = 42925

b) B = 3 + 32 + 33 + 34 + ... + 3100

3B = 32 + 33 + 34 + ... + 3101

3B - B = 3101 - 3

2B = 3101 - 3

Ta có:

2B + 3n = 3101

3101 - 3 + 3n = 3101

⇒ 3n = 3

31 = 3

⇒ n = 1

 

b: \(B=3+3^2+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)

=>\(2B=3^{101}-3\)

\(2B+3^n=3^{101}\)

=>\(3^{101}-3+3^n=3^{101}\)

=>\(3^n=3\)

=>n=1