Tìm x, y thảo mãn \(x^2+y^2=\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\)
với \(x>\frac{1}{4},y>\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ nhé, dễ rồi !
b.
Vì A,B là 2 giao điểm của đt (d) với (P) => \(^{x_A,x_B}\)là nghiệm của pt hoành độ giao điểm sau:
\(-\frac{1}{2}x+2=\frac{1}{4}x^2\)
<=> \(\frac{1}{4}x^2+\frac{1}{2}x-2=0\)
<=> \(x^2+2x-8=0\)
<=> \(x^2+2x+1-9=0\)
<=> \(\left(x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\)
<=> \(\orbr{\begin{cases}x_A=-4\\x_{B=2}\end{cases}}\)
=> \(\hept{\begin{cases}A\left(-4;4\right)\\B\left(2;1\right)\end{cases}}\)
Điểm N thuộc trục hoành => N(n;0)
Ta có: \(NA=\sqrt{\left(x_A-x_N\right)^2+\left(y_A-y_N\right)^2}\)= \(\sqrt{\left(-4-n\right)^2+4^2}=\sqrt{n^2+8n+32}\)
\(NB=\sqrt{(x_B-x_N)^2+\left(y_B-y_N\right)^2}\)= \(\sqrt{\left(2-n\right)^2+1^2}=\sqrt{n^2-4n+5}\)
Tam giác NAB cân tại N <=> NA =NB <=> \(\sqrt{n^2+8n+32}=\sqrt{n^2-4n+5}\)
<=> \(n^2+8n+32=n^2-4n+5\)
<=> \(n=\frac{-27}{12}=\frac{-9}{4}\)
=> \(N\left(\frac{-9}{4};0\right)\)
\(\sqrt{a^3b}+\sqrt{ab^3}-\frac{ab}{\sqrt{ab}}\)
<=>\(a\sqrt{ab}+b\sqrt{ab}-\sqrt{ab}\)
<=>\(\left(a+b-1\right)\sqrt{ab}\)
Xét đt (O) có: \(\widehat{ACB}=90^o\)(Góc nội tiếp chắn nửa đt) => \(\widehat{DCE}=90^o\)(1)
Xét đt (K) có: \(\widehat{CDH}=90^o\)(Góc nội tiếp chắn nửa đt) (2)
\(\widehat{CEH}=90^o\)(góc nội tiếp chắn nửa đt) (3)
Từ (1),(2) và (3) => Tứ giác CDHE là hình chữ nhật (Dhnb) => CH = DE (T/c 2 đường chéo = nhau của HCN) => Đpcm
Có a - b + c = 1 - 9 + 8 =0 nên phương trình có 2 nghiệm x1 = -1 ; x2 = -8
Ta có: \(x^2+9x+8=\left(x+1\right)\left(x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=-8\end{cases}}\)
Sử dụng kĩ thuật Cauchy ngược dấu
Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)
Dấu "=" xảy ra khi a=b=c=1
a,b,c làm như bạn trên nhé. Tuy nhiên câu d, cách của bạn đó làm dài và k hay, mình làm cách khác:
Mình mượn tạm hình vẽ của bạn đó luôn :))))
Gọi I là trung điểm của AB. vì dây AB cố định (gt) => I cố định
=> \(OI\perp AB\)(Quan hệ vuông góc giữa đường kính và dây cung) => \(\widehat{OIA}=90^o\)(1)
Do \(AM\perp CD\)tại M (gt) => \(\widehat{OMA}=90^o\)(2)
Từ (1) và (2) => Tứ giác OMIA là tứ giác nội tiếp (DHNB) => \(\widehat{IMN}=\widehat{OAI}=\widehat{OAB}\)(cùng bù với \(\widehat{OMI}\)) (3)
Lại có: \(\widehat{OIB}=\widehat{ONB}=90^o\)=> tứ giác OINB là tứ giác nội tiếp(DHNB) => \(\widehat{INO}=\widehat{INM}=\widehat{OBI}\)(Cùng chắn \(\widebat{OI}\)) = \(\widehat{OBA}\)(4)
\(\Delta OAB\)Cân tại O do OA=OB=R => \(\widehat{OAB}=\widehat{OBA}\)(t/c) (5)
Từ (3),(4) và (5) => \(\widehat{INM}=\widehat{IMN}\Rightarrow\Delta IMN\)cân tại I (DHNB) => IM =IN (đ/n) (6)
Do CMHA nội tiếp (cmt) => \(\widehat{IHM}=\widehat{ACM}=\widehat{ACO}\)(Cùng bù với \(\widehat{AHM}\)) (7)
Ta có: \(\widehat{IMH}=\widehat{NMH}-\widehat{IMN}\)mà \(\widehat{NMH}=\widehat{CAH}=\widehat{CAB}\)(Cùng bù \(\widehat{CMH}\))
\(\widehat{IMN}=\widehat{INM}=\widehat{INO}=\widehat{IBO}=\widehat{ABO}=\widehat{OAB}\)(CMT) => \(\widehat{IMH}=\widehat{CAB}-\widehat{OAB}=\widehat{CAO}\)(8)
Mặt khác \(\Delta OAC\)Cân tại O do OA=OC=R => \(\widehat{CAO}=\widehat{ACO}\)(9)
Từ (7),(8) và (9) => \(\widehat{IHM}=\widehat{IMH}\Rightarrow\Delta IMH\)cân tại I (DHNB) => IM = IH (đ/n) (10)
Từ (6) và (10) => IM = IH = IN => I là tâm đường tròn ngoại tiếp \(\Delta HMN\)(I cố định) => Đpcm
A B C O D H M N L R G I
a) Xét tứ giác CMHA có: ^CMA=^CHA=900 => Tứ giác CMHA nội tiếp đường tròn
Dựa theo tính chất đừng trung tuyến trong tam giác vuông, ta tìm được tâm G của đường tròn ngoại tiếp tứ giác CMHA là trung điểm của AC.
b) Do tứ giác CMHA nội tiếp (G) => ^ACM+^AHM=1800. Mà ^AHM+^MHB=1800
=> ^ACM=^MHB hay ^ACD=^MHB (1)
Ta thấy tứ giác ACBD nội tiếp (O) => ^ACD=^ABD (2)
Từ (1) và (2) => ^MHB=^ABD. Mà 2 góc này nằm ở vị trí so le trg nên HM // BD (3)
Ta có: Đương tròn (O) có đường kính CD, B thuộc cung CD => ^CBD=900
=> BD vuông góc với BC (4)
Từ (3) và (4) => HM vuông góc với BC (đpcm).
c) Ta có tứ giác CMHA nội tiếp (G) => ^CAH+^CMH=1800. Mà ^CMH+^HMN=1800
=> ^CAH=^HMN hay ^CAB=^HMN
Chứng minh tương tự phần a ta được tứ giác CHNB nội tiếp đường tròn
Từ đó suy ra ^CNH=^CBH hay ^MNH=^CBA
Xét \(\Delta\)HMN và \(\Delta\)CAB: ^CAB=^HMN; ^MNH=^CBA (cmt)
=> \(\Delta\)HMN ~ \(\Delta\)CAB (g.g) (đpcm).
d) Gọi giao điểm của đường tròn ngoại tiếp tâm I \(\Delta\)HMN với AM và AB lần lượt là R và L
Dễ thấy tứ giác HRMN nội tiếp (I) => ^HNM+^HRM=1800. Mà ^ARH+^HRM=1800
=> ^HNM=^ARH hay ^CNH=^ARH (^HNM=^CNH)
Tứ giác CMHA nội tiếp (G) => ^MAH=^MCH hay ^RAH=^NCH
Xét \(\Delta\)AHR và \(\Delta\)CHN: ^CNH=^ARH; ^NCH=^RAH => \(\Delta\)AHR ~ \(\Delta\)CHN (g.g)
=> \(\frac{AH}{CH}=\frac{HR}{HN}\)(5)
Dễ thấy: ^AHR=^CHN => ^AHC+^CHR=^CHR+^RHN => ^AHC=^RHN
Mà ^AHC=900 => ^RHN=900
Tứ giác CHNB nội tiếp đường tròn => ^HBN=^HCN hay ^LBN=^HCN
Lại có: Tứ giác HMLN nội tiếp I => ^HLN=^HMN => 1800-^HLN=1800-^HMN
=> ^NLB=^HMC
Theo t/c góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung => HMC=^NHC=> ^NLB=^NHC
Xét \(\Delta\)CHN và \(\Delta\)BLN: ^HCN=^LBN; ^NHC=^NLB (cmt) => \(\Delta\)CHN ~ \(\Delta\)BLN (g.g)
=> \(\frac{BL}{CH}=\frac{LN}{HN}\)(6)
Xét (I) có đường kính HL; R thuộc cung HL => ^HRL=900 . Tương tự ta có: ^HNL=900
Xét tứ giác HRLN: ^HRL=^HNL=^RHN=900 (cmt) => Tứ giác HRLN là hình chữ nhật
=> HR=LN (2 cạnh đối) (7)
Từ (5); (6) và (7) => \(\frac{AH}{CH}=\frac{BL}{CH}\)=> \(AH=BL\)
I là trung điểm HL => IH=IL => IH+AH=IL+BL => AI=BI => I là trung điểm của AB
Do dây cung AB cố định => Trung điểm I của AB là điểm cố định.
Mà I là tâm đường tròn ngoại tiếp \(\Delta\)HMN
Suy ra tâm đường tròn ngoại tiếp \(\Delta\)HMN là điểm cố định khi C di động trên cung lớn AB (đpcm).