Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Chiều dài mới bằng $100+30=130$ % chiều dài cũ.
Chiều rộng mới bằng $100+20=120$ % chiều rộng cũ.
Diện tích mới bằng: $130.120:100=156$ (%) diện tích cũ.
Diện tích sân vận động tăng $156-100=56$ %
b.
30% chiều dài sân vận động tăng thêm ứng với 60 m
Suy ra chiều dài sân vận động ban đầu là: $60:30.100=200$ (m)
Chiều rộng sân vận động ban đầu: $200\times 3:4=150$ (m)
Ta có : \(\dfrac{2^{10}.9^2}{8^3}\) = \(\dfrac{2^{10}.\left(3^2\right)^2}{\left(2^3\right)^3}\) = \(\dfrac{2^{10}.3^4}{2^9}\) = \(\dfrac{2^9.\left(2.3^4\right)}{2^9}\) = 2.81 = 162
Tick cho mk
- Lễ hội Đền Hùng còn là dịp để giáo dục truyền thống “Uống nước nhớ nguồn”, lòng biết ơn sâu sắc các Vua Hùng đã có công dựng nước và chống giặc ngoại xâm giữ nước.
- Để chúng ta quảng bá ra thế giới về một Di sản vô cùng giá trị, độc đáo, đã tồn tại hàng nghìn năm, ăn sâu vào tâm hồn, tình cảm, trở thành đạo lý truyền thống của người Việt Nam ta.
Đây là lịch sử không phải Toán, bạn nên để đúng chủ đề bài học nhé.
mình biết là mình hỏi sai môn ạ
nma mình cũng đã gửi thử một câu hỏi bên phía lịch sử rồi ạ nhưng chưa có trl(T-T)
mình lên mạng tham khảo thì ko có phần nhận xét(T-T)
a) Số lít nước có trong thùng cao
30 - 6 = 24 (cm)
Số lít nước có trong thùng:
10 × 8 × 24 = 1920 (cm³) = 1,92 (l)
b) Do 1,92 : 0,5 = 3 (dư 0,42) nên số chai nhựa bạn Tùng cần dùng là:
3 + 1 = 4 (chai)
Xét tam giác ABD và tam giác EBD có
\(\widehat{ABD}\) = \(\widehat{EBD}\) (gt)
AB = BE (gt)
BD chung
⇒\(\Delta\)ABD = \(\Delta\) EBD (c-g-c)
⇒AD = DE
⇒ \(\widehat{BAD}\) = \(\widehat{BED}\) = 900
\(\widehat{DEC}\) = 1800 - 900 = 900
Xét tam giác ADI và tam giác EDC có:
\(\widehat{DAI}\) = \(\widehat{DEC}\) = 900 (cmt)
AD = DE (cmt)
AI = EC (gt)
⇒ \(\Delta\)ADI = \(\Delta\)EDC (c-g-c)
⇒ D1 = D4
Mà D2 + D3 + D4 = 1800
⇒ D1 + D2 + D3 = 1800
⇒ \(\widehat{IDE}\) = 1800
⇒ I;D;E thẳng hàng (đpcm)
Do BD là tia phân giác của ∠ABC (gt)
⇒ ∠ABD = ∠EBD
Xét ∆ABD và ∆EBD có:
AB = BE (gt)
∠ABD = ∠EBD (cmt)
BD là cạnh chung
⇒ ∆ABD = ∆EBD (c-g-c)
⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)
⇒ DE ⊥ BC
Do AI = EC (gt)
AB = BE (gt)
⇒ BI = AI + AB = BE + EC = BC
∆BCI có:
BI = BC (cmt)
⇒ ∆BCI cân tại B
Mà BD là tia phân giác của ∠ABC
⇒ BD là tia phân giác của ∠IBC
⇒ BD là đường cao của ∆BCI
Lại có:
CA ⊥ AB (∆ABC vuông tại A)
CA ⊥ BI
⇒ CA là đường cao thứ hai của ∆BCI
⇒ ID là đường cao thứ ba của ∆BCI
⇒ ID ⊥ BC
Mà DE ⊥ BC (cmt)
⇒ I, D, E thẳng hàng
Lời giải:
$\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}$
$\Rightarrow 1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}$
$\Rightarrow \frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}$
$\Rightarrow a+b+c+d=0$ hoặc $a=b=c=d$
Nếu $a+b+c+d=0$ thì:
$M=\frac{a+b}{-(a+b)}+\frac{b+c}{-(b+c)}+\frac{c+d}{-(c+d)}+\frac{d+a}{-(d+a)}=(-1)+(-1)+(-1)+(-1)=-4$
Nê $a=b=c=d$ thì:
$M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}$
$=1+1+1+1=4$