K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4

Em cần làm gì với biểu thức này. 

5 tháng 4

a; 

A(\(x\)) = \(x^3\) - 4\(x\) + a - 3;  B(\(x\)) = \(x-2\)

Theo bezout ta có:

A(\(x\)) ⋮ B(\(x\)) ⇔ A(2) = 0

Thay \(x\) = 2 vào biểu thức A(\(x\)) = \(x^3\) - 4\(x\) + a - 3 = 0 ta có:

A(2) = 23 - 4.2 + a - 3 = 0

          8 - 8 + a  - 3  = 0

                     a - 3 = 0

                    a = 3

Vậy a = 3 thì A(\(x\)) ⋮ B(\(x\))

5 tháng 4

Câu b; BB là như nào em nhỉ?

7 × 8 = 56

81 : 9 = 9

a: \(5x^2\left(2x^3-4x^2+3x-1\right)\)

\(=5x^2\cdot2x^3-5x^2\cdot4x^2+5x^2\cdot3x-5x^2\cdot1\)

\(=10x^5-20x^4+15x^3-5x^2\)

b: \(\left(x^2-3x\right)\left(x^2-2x-8\right)\)

\(=x^4-2x^3-8x^2-3x^3+6x^2+24x\)

\(=x^4-5x^3-2x^2+24x\)

c: \(1225x^7:\left(-25x^2\right)\)

\(=\left(-1225:25\right)\cdot\left(x^7:x^2\right)\)

\(=-49x^5\)

d: \(\left(-10x^3+25x^2-8x\right):\left(-5x\right)\)

\(=\dfrac{10x^3}{5x}-\dfrac{25x^2}{5x}+\dfrac{8x}{5x}\)

\(=2x^2-5x+\dfrac{8}{5}\)

e: \(\left(3x^4-8x^3+11x^2+8x-5\right):\left(3x^2-2x+3\right)\)

\(=\dfrac{3x^4-2x^3+3x^2-6x^3+4x^2-6x+4x^2-\dfrac{8}{3}x+4+\dfrac{50}{3}x-9}{3x^2-2x+3}\)

\(=x^2-2x+\dfrac{4}{3}+\dfrac{\dfrac{50}{3}x-9}{3x^2-2x+3}\)

5 tháng 4

\(-2x^4+3x^5+x^3+4x+14x^4-6x^5-x^3+x+10\)

\(=\left(3x^5-6x^5\right)+\left(-2x^4+14x^4\right)+\left(x^3-x^3\right)+\left(4x+x\right)+10\)

\(=-3x^5+12x^4+5x+10\)

`#NqHahh`

5 tháng 4

-2x⁴ + 3x⁵ + x³ + 4x + 14x⁴ - 6x⁵ - x³ + x + 10

= (3x⁵ - 6x⁵) + (-2x⁴ + 14x⁴) + (x³ - x³) + (4x + x) + 10

= -3x⁵ + 12x⁴ + 5x + 10

6 tháng 4

Chứng minh tam giác là tam giác cân, ta có thể chứng minh:

- Tam giác có hai cạnh bằng nhau.

- Tam giác có hai góc bằng nhau.

- Tam giác có hai trong bốn đường: đường trung tuyến, đường trung trực, đường cao, đường phân giác cùng xuất phát từ một đỉnh.

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

=>BA=BD

mà BA>BH(ΔBAH vuông tại H)

nên BH<BD

=>H thuộc đoạn BD

b: Ta có: ΔBAE=ΔBDE

=>EA=ED

=>E nằm trên đường trung trực của AD(1)

Ta có: BA=BD

=>B nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BE là đường trung trực của AD

c: Xét ΔBAD có

BE,AH là các đường cao

BE cắt AH tại O

Do đó: O là trực tâm của ΔBAD

=>DO\(\perp\)AB

mà AC\(\perp\)AB

nên DO//AC

d: Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHDA vuông tại H)

mà \(\widehat{BAD}=\widehat{BDA}\)(BA=BD)

nên \(\widehat{CAD}=\widehat{HAD}\)

=>AD là phân giác của góc HAC

Xét ΔAHC có AD là phân giác

nên \(\dfrac{DH}{DC}=\dfrac{AH}{AC}\)

mà AH<AC

nên DH<DC

5 tháng 4

Có: \(A\left(x\right)=x^4+2x^2-x\) và \(B\left(x\right)=-x^4-\dfrac{1}{2}x^2+2x-8\)

+, \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(=\left(x^4+2x^2-x\right)+\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)\)

\(=x^4+2x^2-x-x^4-\dfrac{1}{2}x^2+2x-8\)

\(=\dfrac{3}{2}x^2+x-8\)

+, \(D\left(x\right)=B\left(x\right)-A\left(x\right)\)

\(=\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)-\left(x^4+2x^2-x\right)\)

\(=-x^4-\dfrac{1}{2}x^2+2x-8-x^4-2x^2+x\)

\(=-2x^4-\dfrac{5}{2}x^2+3x-8\)

b) Ta có: \(C\left(x\right)=\dfrac{3}{2}x^2+x-8\)

\(\Rightarrow C\left(2\right)=\dfrac{3}{2}\cdot2^2+2-8=0\)

\(\Rightarrow x=2\) là 1 nghiệm của \(C\left(x\right)\)

c) Có: \(E\left(x\right)+D\left(x\right)=2x^4\)

\(\Rightarrow E\left(x\right)=2x^4-D\left(x\right)\)

\(=2x^4-\left(-2x^4-\dfrac{5}{2}x^2+3x-8\right)\)

\(=2x^4+2x^4+\dfrac{5}{2}x^2-3x+8\)

\(=4x^4+\dfrac{5}{2}x^2-3x+8\)

a: Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

=>\(\widehat{CHE}=\widehat{CBA}=65^0\)

b: Sửa đề: ΔBAD cân

Xét ΔBIA vuông tại I và ΔBID vuông tại I có

BI chung

IA=ID

Do đó; ΔBIA=ΔBID

=>BA=BD

=>ΔBAD cân tại B

c: Xét ΔCAD có

CI,DE là các đường cao

CI cắt DE tại H

Do đó: H là trực tâm của ΔCAD

=>AH\(\perp\)CD