K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi tam giác vuông cần tìm là ΔABC vuông tại A, AM là đường trung tuyến.

Trên tia đối của tia MA, lấy D sao cho MA=MD

=>M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà AD=2AM

nên BC=2AM

=>\(AM=\dfrac{1}{2}BC\)(ĐPCM)

 

7 tháng 8

Mình cần gấp!!!

NV
7 tháng 8

Đặt \(n^2+2n+8=k^2\) với k là số tự nhiên

\(\Rightarrow\left(n^2+2n+1\right)+7=k^2\)

\(\Rightarrow\left(n+1\right)^2+7=k^2\)

\(\Rightarrow k^2-\left(n+1\right)^2=7\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=7\)

Ta có bảng sau:

k+n+1-7-117
k-n-1-1-771
k-4-444
n-42-42

Vậy \(n=\left\{-4;2\right\}\)

NV
7 tháng 8

- Với n chẵn \(\Rightarrow n=2k\) với k nguyên

\(\Rightarrow n^2+2014=\left(2k\right)^2+2024=4k^2+2014=2\left(2k^2+1007\right)\) 

Do \(2k^2+1007\) luôn lẻ \(\Rightarrow\)\(2\left(2k^2+1007\right)\) là số chia hết cho 2 nhưng ko chia hết cho 4 nên ko thể là SCP

\(\Rightarrow n^2+2014\) ko thể là SCP

- Với n lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow n^2+2014=\left(2k+1\right)^2+2014=4k^2+4k+2015=4\left(k^2+k+503\right)+3\)

\(\Rightarrow n^2+2014\) chia 4 dư 3

Mà 1 số chính phương chia 4 chỉ có thể dư 0 hoặc 1

\(\Rightarrow n^2+2014\) ko thể là SCP

Vậy \(n^2+2014\) ko là SCP với mọi n nguyên dương

a: Xét tứ giác AQHP có \(\widehat{AQH}=\widehat{APH}=\widehat{PAQ}=90^0\)

nên AQHP là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên KQ=KH=KC

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

Ta có: AQHP là hình chữ nhật

=>AH cắt QP tại trung điểm của mỗi đường và AH=PQ

=>O là trung điểm chung của AH và QP

=>OA=OH=OQ=OP

Ta có: OQ=OH

=>O nằm trên đường trung trực của QH(1)

Ta có: KQ=KH

=>K nằm trên đường trung trực của QH(2)

Từ (1),(2) suy ra OK là đường trung trực của QH

c: Ta có: OK là đường trung trực của QH

=>OK\(\perp\)QH

mà AC\(\perp\)QH

nên OK//AC

=>ACKO là hình thang

Để ACKO là hình thang cân thì \(\widehat{KCA}=\widehat{OAC}\)

=>\(\widehat{HAC}=\widehat{HCA}\)

=>ΔHAC cân tại H

 mà ΔHAC vuông cân tại H

nên \(\widehat{ACH}=45^0\)

=>\(\widehat{ACB}=45^0\)

1

a: Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=>\(\widehat{C}+\widehat{D}=360^0-110^0-70^0=180^0\)

=>\(\dfrac{1}{3}\cdot\widehat{D}+\widehat{D}=180^0\)

=>\(\dfrac{4}{3}\cdot\widehat{D}=180^0\)

=>\(\widehat{D}=135^0\)

\(\widehat{C}=\dfrac{1}{3}\cdot135^0=45^0\)

b:

Sửa đề: Cho tứ giác ABCD.

Đặt \(\widehat{B}=x;\widehat{C}=y;\widehat{D}=z\)

\(\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=>\(x+y+z=360^0-90^0=270^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{270}{9}=30^0\)

=>\(x=2\cdot30^0=60^0;y=3\cdot30^0=90^0;z=4\cdot30^0=120^0\)

Vậy: \(\widehat{B}=x=60^0;\widehat{C}=y=90^0;\widehat{D}=z=120^0\)

1

\(\widehat{C}=\widehat{B}+10^0=\widehat{A}+10^0+10^0=\widehat{A}+20^0\)

\(\widehat{D}=\widehat{C}+10^0=\widehat{A}+20^0+10^0=\widehat{A}+30^0\)

Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

=>\(\widehat{A}+\widehat{A}+10^0+\widehat{A}+20^0+\widehat{A}+30^0=360^0\)

=>\(4\cdot\widehat{A}=300^0\)

=>\(\widehat{A}=75^0\)

\(\widehat{B}=75^0+10^0=85^0\)

\(\widehat{C}=75^0+20^0=95^0\)

\(\widehat{D}=75^0+30^0=105^0\)

\(499^2+499+500\)

\(=499\cdot\left(499+1\right)+500\)

\(=500\cdot499+500=500\cdot500=250000\)

NV
7 tháng 8

\(5y-7\) chia hết \(3-2y\)

\(\Rightarrow2\left(5y-7\right)⋮\left(3-2y\right)\)

\(\Rightarrow1-5\left(3-2y\right)⋮\left(3-2y\right)\)

\(\Rightarrow1⋮\left(3-2y\right)\)

\(\Rightarrow3-2y\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow y\in\left\{2;1\right\}\)

7 tháng 8

Do `y ∈ Z => {(5y - 7  ∈ Z),(3-2y ∈ Z):}`

Điều kiện: `3 - 2y ne 0 => 2y ne 3 => y ne 3/2 `

`5y - 7 vdots 3 - 2y`

`=> 10y - 14 vdots 3 - 2y`

Do `3 - 2y vdots 3 - 2y => 15 - 10y vdots 3 - 2y`

`=> 10y - 14 + 15 - 10y vdots 3 - 2y`

`=> 1 vdots 3 - 2y`

`=> 3 - 2y ∈ Ư(1) = {-1;1}`

`=> 2y ∈ {4;2}`

`=> y ∈ {2;1}` (Thỏa mãn)

Vậy `y ∈ {2;1}`

 

NV
7 tháng 8

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=ab+bc+ca\)

\(\Rightarrow a+b+c+\left(abc-1\right)=ab+bc+ca\) (do \(abc-1=0\) nên có thể thêm bớt)

\(\Rightarrow abc-ab-bc-ca+a+b+c-1=0\)

\(\Rightarrow ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+c-1=0\)

\(\Rightarrow\left(c-1\right)\left(ab-b-a+1\right)=0\)

\(\Rightarrow\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=0\)

\(\Rightarrow\left(c-1\right)\left(a-1\right)\left(b-1\right)=0\) (đpcm)

Câu 1: \(x^3+x-2=0\)

=>\(x^3-x^2+x^2-x+2x-2=0\)

=>\(\left(x-1\right)\left(x^2+x+2\right)=0\)

mà \(x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}>0\forall x\)

nên x-1=0

=>x=1

Câu 3: \(x^4-10x^2-11x-10\)

\(=x^4-x^3-10x^2+x^3-x^2-10x+x^2-x-10\)

\(=x^2\left(x^2-x-10\right)+x\left(x^2-x-10\right)+\left(x^2-x-10\right)\)

\(=\left(x^2-x-10\right)\left(x^2+x+1\right)\)

Câu 5: \(x^3-x^2-14x+24\)

\(=x^3+4x^2-5x^2-20x+6x+24\)

\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)

\(=\left(x+4\right)\left(x^2-5x+6\right)=\left(x+4\right)\left(x-2\right)\left(x-3\right)\)

Câu 6: \(x^3-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

Câu 7:

\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)

\(=a\cdot y^3-xy^3-a\cdot x^3+y\cdot x^3+\left(x-y\right)\cdot a^3\)

\(=a\left(y^3-x^3\right)-xy\left(y^2-x^2\right)+\left(x-y\right)a^3\)

\(=a\left(y-x\right)\left(y^2+xy+x^2\right)-xy\left(y-x\right)\left(y+x\right)-\left(y-x\right)a^3\)

\(=\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\)