lời giải kèm hình. giúp mik vs ạ mik sẽ kb ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//EB
b: Xét ΔMAI và ΔMEK có
MA=ME
\(\widehat{MAI}=\widehat{MEK}\)(cmt)
AI=EK
Do đó: ΔMAI=ΔMEK
=>\(\widehat{AMI}=\widehat{EMK}\)
=>\(\widehat{EMK}+\widehat{EMI}=180^0\)
=>I,M,K thẳng hàng
27 : \(x\) = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)
27 : \(x\) = \(\dfrac{6}{30}-\dfrac{5}{30}\)
27 : \(x\) = \(\dfrac{1}{30}\)
\(x\) = 27 : \(\dfrac{1}{30}\)
\(x\) = 810
xy - 2x + y = 9 (x,y E N)
x(y - 2) + y-2+2 = 9
x(y-2) + (y-2) = 9-2 = 7
(x+1)(y-2) = 7
Suy ra x+1 thuộc Ư(7) = {1;7) (do x E N nên x+1 E N)
TH1 : x+1 = 1
Suy ra y-2 = 7
Suy ra x=0 ; y = 9
Th2: x+1 = 7
Suy ra y-2 = 1
Suy ra x = 6 ; y = 3
Vậy ........
Gọi \(x\) (học sinh) là số học sinh cần tìm \(\left(x\in N;30\le x\le40\right)\)
Do khi xếp hàng 3; 6; 9 đều vừa đủ nên \(x⋮3;x⋮6;x⋮9\)
\(\Rightarrow x\in BC\left(3;6;9\right)\)
Ta có:
\(3=3\)
\(6=2.3\)
\(9=3^2\)
\(\Rightarrow BCNN\left(3;6;9\right)=2.3^2=18\)
\(\Rightarrow x\in\left\{0;18;36;54;...\right\}\)
Mà \(30\le x\le40\)
\(\Rightarrow x=36\)
Vậy lớp 6C có 36 học sinh
a) Sau a phút, lượng nước có trong bể là:
\(x-y\left(l\right)\)
b) Sau b phút, vòi nước chảy vào được số lít nước là: \(bx\left(l\right)\)
Lượng nước trong bể:
\(5+x-y+bx\left(l\right)\)
Bài 4:
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
nên ADME là hình chữ nhật
b: Ta có: MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
Ta có: ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó:D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Ta có: EM=AD(ADME là hình chữ nhật)
AD=DB
Do đó; EM=BD
Xét tứ giác BDEM có
BD//EM
BD=EM
Do đó: BDEM là hình bình hành
c: ADME là hình chữ nhật
=>AM=DE
Ta có: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AM và DE
Ta có: \(OA=OM=\dfrac{AM}{2}\)
\(OD=OE=\dfrac{DE}{2}\)
mà AM=DE
nên OA=OM=OD=OE=AM/2=DE/2
ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}\)
=>\(2OE=\dfrac{BC}{2}\)
=>BC=4OE
d: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AE
mà AE=MD(ADME là hình chữ nhật)
nên HE=MD
Ta có: BDEM là hình bình hành
=>DE//MB
=>DE//BC
=>DE//HM
Xét tứ giác HMED có
HM//ED
HE=MD
Do đó: HMED là hình thang cân
e: Xét tứ giác ABCI có
E là trung điểm chung của AC và BI
=>ABCI là hình bình hành
=>AI//BC
Xét tứ giác AMCF có
E là trung điểm chung của AC và MF
=>AMCF là hình bình hành
=>AF//CM
=>AF//BC
ta có: AF//BC
AI//BC
mà AF,AI có điểm chung là A
nên A,F,I thẳng hàng
Bài 6:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)\left(x-3\right)\cdot\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
=>B là bình phương của một số nguyên
a: Xét ΔABC và ΔCDA có
AB=CD
AC chung
BC=DA
Do đó: ΔABC=ΔCDA
=>\(\widehat{BAC}=\widehat{DCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: ΔABC=ΔCDA
=>\(\widehat{ACB}=\widehat{DAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
mà AH\(\perp\)BC
nên AH\(\perp\)AD