Cho tứ giác ABCD nội tiếp đường tròn (O;R). Gọi I là giao của AC và BD. (I khác O). Các điểm A', B', C' D' lần lượt trên đoạn thẳng IA,IB,IC,ID dao cho IA'/IA=IB'/IB=IC'/IC=ID'/ID. CMR A', B', C', D' cùng thuộc một đường tròn. Tính bán kính của đường tròn đó theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì OI _|_ AB tại I, OK _|_ AC tại K. Do đó: \(AI=AK=\frac{a}{2}\)
Trên tia đối của tia IA lấy F sao cho IF=EK
Đặt AD=x, AE=y
Chứng minh được \(DE=\sqrt{x^2+y^2-xy}\)
Ta có: \(\frac{1}{BD}+\frac{1}{CE}=\frac{3}{a}\Rightarrow\frac{1}{a-x}+\frac{1}{a-y}=\frac{3}{a}\)
=> a2-2(x+y)a+3xy=0
Từ gt có: x+y < a; a=x+y+\(\sqrt{x^2+y^2-xy}\)
AI+AK=AD+AE+DE; DI+EK=DE
DF=DE => OI=OH => AB=MN
Từ đó chứng minh BMNC là hình thang cân
Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)
Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)
=> BDEF và CDEG là các tứ giác nội tiếp
Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG
Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)
Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)
=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)
Đẳng thức xảy ra khi và chỉ khi
BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC
Giả sử AB là 1 cạnh của hình tám cạnh đều, gọi AB=a.
Vẽ AK là đường co của tam giác OAB
Ta có: \(\widehat{AOB}=\frac{360^o}{8}=45^o\Rightarrow OK=AK=\sin45^o=\frac{OA\sqrt{2}}{2}=\frac{R\sqrt{2}}{2}\)
Nên KB=OB-OK=\(\frac{R\sqrt{2}}{2}-R=R\left(\frac{\sqrt{2}}{2}-1\right)\)
Xét tam giác KAB vuông tại K, theo định lý Pytago ta có:
\(AB^2=AK^2+KB^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[R\left(\frac{\sqrt{2}}{2}-1\right)\right]^2\)
\(AB^2=R^2\left(\frac{1}{2}+\frac{1}{2}-\sqrt{2}+1\right)\)
\(\Rightarrow AB^2=\left(2-\sqrt{2}\right)R^2\)
\(\Rightarrow AB=\sqrt{2-\sqrt{2}}R\)
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)