K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

x-y=9\(\Rightarrow x=9+y\) thế x=9+y  vào 49x-5y=485 ta được

\(49.\left(9+y\right)-5y=485\Leftrightarrow441+49y-5y=485\Leftrightarrow49y-5y=44\Leftrightarrow44y=44\Rightarrow y=1\)

thế y=1 vào x-y=9 ta được

x-1=9

=>x=10 

vậy...

26 tháng 4 2020

C:2 

Thay \(x-y=9\)vào \(49x-5y=485\)có :

\(44x+\left(5x-5y\right)=485\)

\( < =>44x=485-45=440\)

\(< =>x=10\)

Thay \(x=10\)vào \(x-y=9\)có :

\(10-y=9\)

\(< =>y=1\)

Vậy ...

26 tháng 4 2020

\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)

Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P

26 tháng 4 2020

Theo BĐT AM-GM ta có:

\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)

\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)

Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)

\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)

Dấu "=" xảy ra <=> a=b=c

26 tháng 4 2020

\(\hept{\begin{cases}4x-y=5\left(1\right)\\16y^2-8xy+x^2-40xy+10x+25=0\left(2\right)\end{cases}}\)

(1) thay (2) => \(\left(4x-5\right)^2-8x\left(4x-5\right)^2+x^2-40x\left(4x-5\right)+10x+25=0\)

\(\Leftrightarrow16x^2-40x+25-32x^2+40x+x^2-160x^2+200x+10x+25=0\)

\(\Leftrightarrow-175x^2+210x+50=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{21+\sqrt{791}}{35}\Rightarrow y=\frac{-91+4\sqrt{791}}{35}\\x=\frac{21-\sqrt{791}}{35}\Rightarrow y=-\frac{91+4\sqrt{791}}{35}\end{cases}}\)

27 tháng 4 2020

a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :

 x2-30x+221=0

\(\Delta^,\)=225-221=4                     ;\(\sqrt{\Delta^,}\)=2

=> pt có hai nghiệm phân biệt .

x1=13                   ; x2=17

Vậy x=13;y=17 hoặc x=17; y=13

25 tháng 4 2020

O A B D m C

a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)

=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)

=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)

b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)

\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)

Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA

=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)

=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)

=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA

=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)

c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)

26 tháng 4 2020

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

25 tháng 4 2020

vì a,b dương nên BĐT đã cho tương đương với :

\(\frac{a}{b^2}-\frac{1}{b}+\frac{b}{a^2}-\frac{1}{a}+4\left(\frac{4}{a+b}-\frac{1}{a}-\frac{1}{b}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{b^2}+\frac{b-a}{a^2}+4.\frac{4ab-\left(a+b\right)^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a+b\right)}{a^2b^2}-\frac{4\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+b\right)^2-4ab\right]\ge0\)

\(\Leftrightarrow\left(a-b\right)^4\ge0\)( luôn đúng )

Dấu "=" xảy ra khi a = b

25 tháng 4 2020

A K I D E H B F C

a ) Ta có : \(BD\perp AC,CE\perp AB\)

\(\Rightarrow\widehat{ADH}=\widehat{AEH}=90^0,\widehat{BDC}=\widehat{BEC}=90^0\)

\(\Rightarrow ADHE,BEDC\) nội tiếp

b . Ta có : \(\widehat{DHC}=\widehat{EHB},\widehat{HDC}=\widehat{HEB}=90^0\)

\(\Rightarrow\Delta HDC~\Delta HEB\left(g.g\right)\)

\(\Rightarrow\frac{HD}{HE}=\frac{HC}{HB}\Rightarrow HD.HB=HE.HC\)

c . Vì H là trực tâm \(\Delta ABC\Rightarrow AH\perp BC=F\)

Lại có : \(\widehat{AHD}=\widehat{CBF}\left(+\widehat{FAC}=90^0\right)\)

\(\widehat{AID}=\widehat{ACB}\Rightarrow\widehat{AID}=\widehat{AHD}\)

\(\Rightarrow\Delta AHI\) cân tại A 

Mà \(AD\perp HI\Rightarrow AD\) là trung trực của HI \(\Rightarrow\)AC là đường trung trực của của HI.

d ) Từ câu c \(\Rightarrow AI=AH\)

Tương tự \(\Rightarrow AK=AH\Rightarrow A\) là tâm đường tròn ngoại tiếp \(\Delta HIK\)

25 tháng 4 2020

A D C E V L O K B

25 tháng 4 2020

a.Vì  DC,DA là tiếp tuyến của (O) \(\Rightarrow DC=DA\)

Tương tự \(EC=EB\Rightarrow DE=DC+CE=AD+BE\)

Mà EC,EB là tiếp tuyến của (O) \(\Rightarrow EC\perp OC,EB\perp OC\)

=> C,O,B,E cùng thuộc một đường tròn đường kính OE

b ) Ta có : EB,EC là tiếp tuyến của (O) \(\Rightarrow EO\perp CB=L\)

Mà VL là đường kính của (O)

\(\Rightarrow LK.LV=CL^2=LO.LE\)

c.Ta có :

\(\widehat{VCL}=\widehat{CBV}=\widehat{ECV}\) vì EC là tiếp tuyến của (O)

\(\Rightarrow CV\) là phân giác \(\widehat{ECL}\)

\(\Rightarrow\frac{VL}{VE}=\frac{CL}{CE}\)

Lại có : \(\Delta CLE~\Delta OCE\left(g.g\right)\)

\(\Rightarrow\frac{CL}{CE}=\frac{OC}{OE}\)

Lại có : \(OC^2=OL.OE\Rightarrow\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{KV}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{2R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL+VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{R}{R}=1\)

\(\Rightarrow\frac{1}{VL}-\frac{1}{VE}=\frac{2}{KV}\)