P=\(\left(\frac{x-2}{x+2}+\frac{x}{x-2}+\frac{2x+4}{4-x^2}\right).\left(1+\frac{5}{x-3}\right)\) và \(x\ne\pm2,x\ne3\) Tính P khi \(^{x^2-3x+2=0}\) tìm x để P=\(\frac{4}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số phần trăm 3ha và 9ha cuối cùng so với diện tích cánh đồng là:
\(100\%-\left(50\%+25\%\right)=25\%\)
\(\Rightarrow\)Cứ 3 ha và 9ha cuối cùng hay 12 ha thì được 25% vậy 12 ha chiếm \(\frac{1}{4}\)diện tích cánh đồng hay diện tích cánh đồng gấp 4 lần 12ha
Diện tích cánh đồng là:
\(12\cdot4=48\left(ha\right)\)
Đáp số: \(48ha\)
Tỉ số phần trăm 3ha và 9ha cuối cùng so với diện tích cánh đồng là:
Cứ 3 ha và 9ha cuối cùng hay 12 ha thì được 25% vậy 12 ha chiếm diện tích cánh đồng hay diện tích cánh đồng gấp 4 lần 12ha
Diện tích cánh đồng là:
Đáp số:
Answer:
Bài 3:
a. ĐKXĐ: \(x\ne\pm2;x\ne0\)
Khi đó \(A=\frac{x^4}{x^2-4}.\left(\frac{x+x}{2\left(x-2\right)}+\frac{2-3x}{x\left(x-2\right)}\right)\)
\(=\frac{x^4}{x^2-4}.\frac{x\left(x+2\right)+2\left(2-3x\right)}{2x\left(x-2\right)}\)
\(=\frac{x^3}{x^2-4}.\frac{x^2+2x+4-6x}{2\left(x-2\right)}\)
\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x-2\right)^2}{2\left(x-2\right)}\)
\(=\frac{x^3}{2\left(x+2\right)}\)
b. Vì \(\left|2x-1\right|=3\Rightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\text{(Loại)}\\x=-1\end{cases}}\)
Với x = - 1 thì \(A=\frac{\left(-1\right)^3}{2\left(-1+2\right)}\)\(=-\frac{1}{2}\)
Answer:
Bài 4:
a) \(M=\frac{2x^3-6x^2+x-8}{x-3}\)
\(=\frac{2x^2.\left(x-3\right)+x-8}{x-3}\)
\(=\frac{2x^2.\left(x-3\right)}{x-3}+\frac{x-8}{x-3}\)
\(=2x^2+\frac{x-3-5}{x-3}\)
\(=2x^2+\frac{x-3}{x-3}-\frac{5}{x-3}\)
\(=2x^2+1-\frac{5}{x-3}\)
M nguyên khi \(\frac{5}{x-3}\) nguyên
\(\Leftrightarrow5⋮\left(x-3\right)\Leftrightarrow x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\) thì M nguyên.
b) \(N=\frac{3x^2-x+3}{3x+2}\)
\(=\frac{x\left(3x+2\right)-3x+3}{3x+2}\)
\(=\frac{x\left(3x+2\right)-\left(3x+2\right)+5}{3x+2}\)
\(=\frac{\left(3x+2\right)\left(x-1\right)+5}{3x+2}\)
\(=x-1+\frac{5}{3x+2}\)
\(\Rightarrow\frac{5}{3x+2}\) phải là số nguyên và x nguyên
\(\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{\pm1\right\}\)
Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)
Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Từ đó ta có \(P\ge\sqrt{2}\)
Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)
A . television B . radio C . stereo D . table
HT
Answer:
\(P=\left(\frac{x-2}{x+2}+\frac{x}{x-2}+\frac{2x+4}{4-x^2}\right)\left(1+\frac{5}{x-3}\right)\)
\(=\frac{\left(x-2\right)^2+x\left(x+2\right)-2x-4}{x^2-4^2}.\frac{x-3+5}{x-3}\)
\(=\frac{2x^2-4x}{x^2-4}.\frac{x+2}{x-3}\)
\(=\frac{2x}{x-3}\)
Phương trình \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\text{(Loại)}\end{cases}}\)
Với \(x=1\Leftrightarrow P=\frac{2-1}{1-3}=-1\)
\(P=\frac{4}{5}\Rightarrow\frac{2x}{x-3}=\frac{4}{5}\)
\(\Rightarrow10x=4x-12\)
\(\Rightarrow x=-2\)
Answer:
Sửa dòng thứ bốn từ dưới lên giúp mình:
Với \(x=1\Leftrightarrow P=\frac{2.1}{1-3}=-1\)
Để \(P=\frac{4}{5}\Leftrightarrow\frac{2x}{x-3}=\frac{4}{5}\)
\(\Leftrightarrow10x=4x-12\)
\(\Leftrightarrow x=-2\) (Loại)
Vậy không có x để \(P=\frac{4}{5}\)