Cho a,b,c dương thỏa mãn \(\frac{a^2}{a+b}\)+\(\frac{b^2}{b+c}\)+\(\frac{c^2}{c+a}\)=\(\frac{2020}{2021}\).Tính N=\(\frac{a^2}{a+c}\)+\(\frac{b^2}{b+a}\)+\(\frac{c^2}{c+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)
\(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{3}{2}orx=-1\)
Vậy nghiệm của phương trình là x = -3/2 ; -1
\(\left(2x-5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x-5-x-2\right).\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right).\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=7\\3x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{7;1\right\}\)
\(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2=4.\left(x-1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x+2\right).\left(x+1+2x-2\right)=0\)
\(\Leftrightarrow\left(-x+3\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+3=0\\3x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=-3\\3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;\frac{1}{3}\right\}\)
a) Ta có: \(\left(2x-5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=x+2\\2x-5=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\3x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
b) Ta có: \(\left(x+1\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=2x-2\\x+1=2-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\3x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
a) đk: \(x\ne\left\{1;2\right\}\)
Ta có: \(1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Rightarrow x^2-3x+2+2x^2-7x+5-3x^2+11x-10=0\)
\(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy x = 3
b) đk: \(x\ne\left\{0;2\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
\(\Leftrightarrow\frac{\left(x+2\right)x-2}{\left(x-2\right)x}=\frac{x-2}{\left(x-2\right)x}\)
\(\Rightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\) vì x khác 0 nên
=> \(x+1=0\Rightarrow x=-1\)
Vậy x = -1
c) đk: \(x\ne\pm3\)
Ta có: \(\frac{x+2}{x-3}+\frac{x-2}{x+3}-\frac{2\left(x^2+6\right)}{x^2-9}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+3\right)+\left(x-2\right)\left(x-3\right)-2\left(x^2+6\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow x^2+5x+6+x^2-5x+6-2x^2-12=0\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Vậy mọi x thực thỏa mãn đk thì PT luôn có nghiệm
d) đk: \(x\ne-1\)
Ta có: \(\frac{-7x^2+4}{x^3+1}=\frac{5}{x^2-x+1}-\frac{1}{x+1}\)
\(\Leftrightarrow\frac{-7x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{5\left(x+1\right)-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow-7x^2+4=5x+5-x^2+x-1\)
\(\Leftrightarrow6x^2+6x=0\)
\(\Leftrightarrow6x\left(x+1\right)=0\) vì x + 1 khác 0
=> x = 0
Vậy x = 0
1) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)\left(x-3\right)=0\\\left(x-1\right)\left(x-4\right)=0\end{cases}}\Rightarrow x\in\left\{1;2;3;4\right\}\)
2) Ta có: \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)-42=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x^2+x\right)-42=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+7\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+7\right)=0\)
Vì \(x^2+x+7=\left(x^2+x+\frac{1}{4}\right)+\frac{27}{4}=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
(5x-9)^3 + (11-5x)^3 =386
\(\Rightarrow\)5x-9+11-5x=386
\(\Rightarrow\)2 = 386
Ta có:
\(\left(5x-9\right)^3+\left(11-5x\right)^3=386\)
\(\Leftrightarrow125x^3-675x^2+1215x-729+1331-1815x+825x^2-125x^3-386=0\)
\(\Leftrightarrow150x^2-600x+216=0\)
\(\Leftrightarrow25x^2-100x+36=0\)
\(\Leftrightarrow\left(5x-18\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{18}{5}\\x=\frac{2}{5}\end{cases}}\)