Cho p là số nguyên tố (p > 3) và 2p+1 cũng là số nguyên tố.Chứng minh 4p+1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3AN=2CN
=>\(AN=\dfrac{2}{3}CN\)
=>\(AN=\dfrac{2}{5}AC\)
=>\(CN=\dfrac{3}{5}AC\)
CM=2BM
=>\(BM=\dfrac{1}{3}BC;CM=\dfrac{2}{3}BC\)
Vì \(CN=\dfrac{3}{5}AC\)
nên \(S_{MNC}=\dfrac{3}{5}\cdot S_{AMC}\)
=>\(S_{AMC}=30:\dfrac{3}{5}=50\left(cm^2\right)\)
Vì \(CM=\dfrac{2}{3}BC\)
nên BC=1,5CM
=>\(S_{ABC}=1,5\cdot S_{AMC}=1,5\cdot50=75\left(cm^2\right)\)
\(\left(\dfrac{3}{9}-\dfrac{1}{3}\right)\times\dfrac{2}{7}=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\times\dfrac{2}{7}=0\times\dfrac{2}{7}=0\)
a: Chiều rộng thửa ruộng là:
60x40%=24(m)
Diện tích thửa ruộng là 60x24=1440(m2)
b; Vì chưa biết mỗi mét vuông thu được bao nhiêu số ki-lô-gam khoai tây nên số tiền thu được từ bán số khoai tây là không thể xác định.
Anh Hai làm được số phần trăm số sản phẩm của tổ là:
\(130:1500=\dfrac{13}{150}=\dfrac{1300\%}{150}\)
Đáp số: \(\dfrac{1300\%}{150}\)
Giải:
Tỉ số phần trăm số sản phẩm anh Hai làm được và số sản phẩm của cả tổ là:
130 : 1500 = 0,0866...
0,0866... = 8,67%
Đáp số: 8,67%
Độ dài đáy của hình tam giác là:
\(19,32\times2:4,6=8,4\left(cm\right)\)
\(\rightarrow\) Không đáp án nào đúng
Độ dài đáy của tam giác là:
19,32x2:4,6=8,4(cm)
=>Không có câu nào đúng
Gọi vận tốc ban đầu của ô tô là x(km/h)
(Điều kiện: x>0)
Thời gian ô tô đi 180km đầu tiên là: \(\dfrac{180}{x}\left(giờ\right)\)
Độ dài quãng đường còn lại là 400-180=220(km)
Vận tốc của ô tô khi đi trên quãng đường còn lại là:
x+10(km/h)
Thời gian ô tô đi 220km còn lại là \(\dfrac{220}{x+10}\left(giờ\right)\)
Thời gian đi hết quãng đường là 8 giờ nên ta có:
\(\dfrac{180}{x}+\dfrac{220}{x+10}=8\)
=>\(\dfrac{45}{x}+\dfrac{55}{x+10}=2\)
=>\(\dfrac{45x+450+55x}{x\left(x+10\right)}=2\)
=>2x(x+10)=100x+450
=>x(x+10)=50x+225
=>\(x^2-40x-225=0\)
=>(x-45)(x+5)=0
=>\(\left[{}\begin{matrix}x=45\left(nhận\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
Vậy: vận tốc ban đầu của ô tô là 45km/h
Giải:
Gọi vận tốc ban đầu của ô tô là: \(x\) (km/h) ; \(x\) > 0
Vận tốc lúc sau của ô tô là: \(x+10\) (km/h)
Thời gian ô tô đi lúc đầu là: 180 : \(x\) (giờ)
Thời gian ô tô đi lúc sau là: (400 - 180) : (\(x+10\)) = \(\dfrac{220}{x+10}\)
Theo bài ra ta có phương trình:
\(\dfrac{180}{x}\) + \(\dfrac{220}{x+10}\) = 8
\(\dfrac{45}{x}\) + \(\dfrac{55}{x+10}\) = 2
45(\(x+10\)) + 55\(x\) = 2.\(x\) (\(x+10\))
45\(x\) + 450 + 55\(x\) = 2\(x^2\) + 20\(x\)
2\(x^2\) + 20\(x\) - 55\(x\) - 45\(x\) = 450
2\(x^2\) + (20\(x\) - 55\(x\) - 45\(x\)) = 450
2\(x^2\) + (- 35\(x\) - 45\(x\)) = 450
2\(x^2\) - 80\(x\) = 450
\(x^2\) - 40\(x\) = 225
\(x^2\) - 40\(x\) + 400 = 625
(\(x-20\))2 = 252
\(\left[{}\begin{matrix}x-20=25\\x-20=-25\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=25+20\\x=-25+20\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=45\\x=-5\end{matrix}\right.\)
\(x=-5\) < 0 (loại)
Vậy \(x=45\)
Kết luận:...
\(a,27x^3-1\\ =\left(3x^3\right)-1^3\\ =\left(3x-1\right)\left(9x^2+3x+1\right)\\ \)
Sửa:
\(b,8x^3+27\\ =\left(2x\right)^3+3^3\\ =\left(2x+3\right)\left(4x^2-6x+9\right)\)
a: \(27x^3-1=\left(3x\right)^3-1^3\)
\(=\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1^2\right]\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)\)
b: Sửa đề: \(8x^3+27\)
\(8x^3+27=\left(2x\right)^3+3^3\)
\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)
\(=\left(2x+3\right)\left(4x^2-6x+9\right)\)
Cần gấp
p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)
=>Loại
Vậy: p=3k+2
\(4p+1=4\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
=>4p+1 là hợp số