Mức độ 4: Khai triển cơ bản sử dụng hằng đẳng thức số 1+2
a.x2 - 9+ y2 + 2xy
b. x2 - 4 + 4y2 + 4xy
c.x2 - 16 + 9y2 + 6xy
d.x2 - 9 + 16y2 + 8xy
giúp em vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-5}{3}=\dfrac{x+7}{2}\\ =>2\left(x-5\right)=3\left(x+7\right)\\ =>2x-10=3x+21\\ =>3x-2x=-10-21\\ =>x=-31\)
Vậy: ...
TH1: \(-\dfrac{1}{2}\le x\le\dfrac{5}{3}\)
\(\left(2x+1\right)+\left(5-3x\right)=6\\ =>2x+1+5-3x=6\\ =>\left(2x-3x\right)+6=6\\ =>x=0\left(tm\right)\)
TH2: \(x>\dfrac{5}{3}\)
\(\left(2x+1\right)-\left(5-3x\right)=6\\ =>2x+1-5+3x=6\\ =>2x+3x=6-1+5\\ =>5x=10\\ =>x=\dfrac{10}{5}=2\left(tm\right)\)
TH3: \(x< -\dfrac{1}{2}\)
\(-\left(2x+1\right)+\left(5-3x\right)=6\\ =>-2x-1+5-3x=6\\ =>-2x-3x+4=6\\ =>-5x=6-4=2\\ =>x=-\dfrac{2}{5}\left(ktm\right)\)
\(A=\dfrac{1}{4}:\left(1,5-1\dfrac{5}{6}\right)+1\\ =\dfrac{1}{4}:\left(\dfrac{3}{2}-\dfrac{11}{6}\right)+1\\ =\dfrac{1}{4}:\dfrac{9-11}{6}+1\\ =\dfrac{1}{4}:\dfrac{-2}{6}+1\\ =\dfrac{1}{4}\cdot\left(-3\right)+1\\ =\dfrac{-3}{4}+1\\ =\dfrac{1}{4}\)
Ta có:
\(y^3+2y^2+y+4=\left(y+2\right)^3-\left(4y^2+11y+4\right)\)
Do y là số tự nhiên \(\Rightarrow4y^2+11y+4>0\Rightarrow\left(y+2\right)^3>y^3+2y^2+y+4\)
Đồng thời cũng do y tự nhiên \(\Rightarrow2y^2+y+4>0\Rightarrow y^3+2y^2+y+4>y^3\)
\(\Rightarrow y^3< y^3+2y^2+y+4< \left(y+2\right)^3\)
\(\Rightarrow y^3+2y^2+y+4\) là lập phương của 1 số tự nhiên khi và chỉ khi:
\(y^3+2y^2+y+4=\left(y+1\right)^3\)
\(\Leftrightarrow y^2+2y-3=0\Rightarrow y=1\)
\(\Rightarrow x^3=8\Rightarrow x=2\)
Ta có:
`(2x-5)^2022>=0` với mọi x
`(3y-4)^2024>=0` với mọi y
`=>(2x-5)^2022+(3y-4)^2024>=0` với mọi x,y
Mặt khác: `(2x-5)^2022+(3y-4)^2024<=0`
`=>2x-5=0` và `3y-4=0`
`=>x=5/2` và `y=4/3`
\(P+\left(5\cdot\dfrac{5}{2}-2\cdot\dfrac{4}{3}\right)=6\cdot\left(\dfrac{5}{2}\right)^2+9\cdot\dfrac{5}{2}\cdot\dfrac{4}{3}-\left(\dfrac{4}{3}\right)^2\\ =>P+\dfrac{59}{6}=\dfrac{1183}{18}\\ =>P=\dfrac{1183}{18}-\dfrac{59}{6}\\ =>P=\dfrac{503}{9}\)
\(\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\\ =\dfrac{1}{99\cdot97}-\left(\dfrac{1}{97\cdot95}+...+\dfrac{1}{5\cdot3}+\dfrac{1}{3\cdot1}\right)\\ =\dfrac{1}{99\cdot97}-\left(\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{93}-\dfrac{1}{95}+...+\dfrac{1}{3}-\dfrac{1}{5}+1-\dfrac{1}{3}\right)\\ =\dfrac{1}{99\cdot97}-\left(-\dfrac{1}{97}+1\right)\\ =\dfrac{1}{99}-\dfrac{1}{97}+\dfrac{1}{97}-1\\ =\dfrac{1}{99}-1\\ =-\dfrac{98}{99}\)
\(\dfrac{11}{48}=\dfrac{11.3}{48.3}=\dfrac{33}{144}\)
\(\dfrac{17}{36}=\dfrac{17.4}{36.4}=\dfrac{68}{144}\)
Do \(68>33\Rightarrow\dfrac{68}{144}>\dfrac{33}{144}\Rightarrow\dfrac{17}{36}>\dfrac{11}{48}\)
\(\left(x^2y^2+2x^2y+x^2\right)\left(x^2+2x-2\right)=\left(xy+x\right)^2\left(x^2+2x-2\right)\)
Do \(\left(xy+x\right)^2\) chính phương với mọi x;y nguyên nên biểu thức đã cho chính phương khi \(x^2+2x-2\) là SCP
\(\Rightarrow x^2+2x-2=k^2\)
\(\Rightarrow\left(x+1\right)^2-k^2=3\)
\(\Rightarrow\left(x+1-k\right)\left(x+1+k\right)=3\)
Pt ước số cơ bản, dễ dàng giải ra \(x=\left\{-3;1\right\}\)
Vậy \(\left(x;y\right)=\left(-3;k\right);\left(1;k\right)\) với k là số nguyên bất kì
a.
\(=\left(x^2+2xy+y^2\right)-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y-3\right)\left(x+y+3\right)\)
b.
\(=\left(x^2+4xy+4y^2\right)-4\)
\(=\left(x+2y\right)^2-2^2\)
\(=\left(x+2y-2\right)\left(x+2y+2\right)\)
c.
\(=\left(x^2+6xy+9y^2\right)-16\)
\(=\left(x+3y\right)^2-4^2\)
\(=\left(x+3y-4\right)\left(x+3y+4\right)\)
d.
\(=\left(x^2+8xy+16y^2\right)-9\)
\(=\left(x+4y\right)^2-3^2\)
\(=\left(x+4y-3\right)\left(x+4y+3\right)\)
em c.on ạ