Tìm các cặp số x, y thỏa mãn:
x2 + 3y2 = 84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d thuộc Ư C ( 2n + 1 ; 2n + 3 )
=> \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)=> ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d => 2 \(⋮\)d => d thuộc Ư ( 2 ) = { \(\pm1;\pm2\)}
mà 2n + 1 và 2n + 3 là số lẻ => d khác cộng trừ 2 => d = \(\pm\)1
Vậy phân số trên tối giản
Gọi d = ƯCLN ( 2n + 1 ; 2n + 3 )
Ta có : 2n + 1 chia hết cho d
2n + 3 chia hết cho d
=> ( 2n + 3 - 2n - 1 ) chia hết cho d
=> 2 chia hết cho d => d thuộc { 1 ; - 1 ; 2 ; - 2 }
mà 2n + 1 ; 2n + 3 lẻ => d lẻ => d thuộc { 1 ; - 1 }
=> 2n + 1 ; 2n + 3 là hai số nguyên tố cùng nhau
=> phân số \(\frac{2n+1}{2n+3}\) là phân số tối giản
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
Gọi \(ƯCLN\left(14x+3,21x+4\right)=d\)
Ta có :
14 = 2.7
21 = 3.7
\(BCNN\left(14x,21x\right)=7.2.3=42x\)
Lại có : \(14x+3⋮d\); \(21x+4⋮d\)
\(\Rightarrow3\left(14x+3\right)⋮d\)
\(\Rightarrow2\left(21x+4\right)⋮d\)
\(\Rightarrow3\left(14x+3\right)-2\left(21x+4\right)⋮d\)
\(\Rightarrow\left(42x+9\right)-\left(42x+8\right)⋮d\)
\(\Rightarrow42x+9-42x-8⋮d\)
\(\Rightarrow\left(42x-42x\right)+\left(9-8\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\left(ĐPCM\right)\)
Vậy phân số \(\frac{14x+3}{21x+4}\)là phân số tối giản \(\forall x\inℕ\)
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Tk mk nha
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
\(P=1+\frac{1}{2^2}+...+\frac{1}{2014^2}>1+\frac{1}{2^2}.1007\)
\(\Rightarrow P>1+\frac{1007}{4}\)
Vì \(P>1+\frac{1007}{4}\)
Mà \(1+\frac{1007}{4}>1+\frac{3}{4}\)
=>P>Q
* Hình như đề bài thiếu, phải có x, y là các số tự nhiên nx bạn nhé
Vì x, y là các số tự nhiên nên \(x^2\), \(y^2\)là các số chính phương.
Ta có: 84 \(⋮\)3; \(3y^2⋮3\)nên \(x^2⋮3\Rightarrow x⋮3\)
Với x = 0 => \(3y^2=84\Rightarrow y^2=28\)(loại vì 28 không phải số chính phương)
Với x = 3 \(\Rightarrow3y^2=75\Rightarrow y^2=25\Rightarrow y=5\)(thỏa mãn điều kiên của y)
Với x = 6 => \(3y^2=48\Rightarrow y^2=16\Rightarrow y=4\)(thỏa mãn điều kiên của y)
Với x = 9 => \(3y^2=3\)=> y^2= 1 => y = 1 (thỏa mãn điều kiên của y)
Với \(x\ge12\)thì x^2 > 84-> ko thỏa mãn đề bài
=> \(\left(x,y\right)\in\left\{\left(3,5\right);\left(6,4\right);\left(9,1\right)\right\}\)