x2 + 6x + 9 = 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3^x=81\\ 3^x=3^4\\ x=4\)
b)
\(\left(3x-5\right)^2=49\\ \left(3x-5\right)^2=7^2\)
TH1: 3x - 5 = 7
3x = 7 + 5
3x = 12
x = 12 : 3
x = 4
TH2: 3x - 5 = -7
3x = -7 + 5
3x = -2
x = -2/3
c) 68 - ? = 36
d)
\(\left(7-2x\right)^3=27\\ \left(7-2x\right)^3=3^3\\ 7-2x=3\\ 2x=7-3\\ 2x=4\\ x=\dfrac{4}{2}\\ x=2\)
Đặt:
\(A=\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+...+\dfrac{1}{25^{10}}\\ A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{\left(5^2\right)^{10}}\\ A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{20}}\\ 5A=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{19}}\\ 5A-A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{19}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{20}}\right)\\4A =1-\dfrac{1}{5^{20}}\\ 4A=\dfrac{5^{20}-1}{5^{20}}\\ A=\dfrac{5^{20}-1}{4\cdot5^{20}}\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+50\right)=1175\)
\(50x+\left(1+2+...+50\right)=1175\)
\(50x+\dfrac{50\cdot\left(50+1\right)}{2}=1175\)
\(50x+1275=1175\)
\(50x=1175-1275\)
\(50x=-100\)
\(x=-100:50\)
\(x=-2\)
Vậy...
sửa \(\left(x+1\right)+\left(x+2\right)+...+\left(x+50\right)=1175\)
\(\Leftrightarrow50x+1275=1175\Leftrightarrow x=-2\)
\(\left(\dfrac{2}{3}\right)^8:\left(\dfrac{4}{9}\right)^3\\ =\left[\left(\dfrac{2}{3}\right)^2\right]^4:\left(\dfrac{4}{9}\right)^3\\ =\left(\dfrac{4}{9}\right)^4:\left(\dfrac{4}{9}\right)^3\\ =\dfrac{4}{9}\)
\(27^3:3^2\\ =\left(3^3\right)^3:3^2\\ =3^9:3^2\\ =3^7\\ =2187\)
\(\left(-\dfrac{3}{5}\right)^4:\left(\dfrac{5}{2}\right)^4\\ =\left(-\dfrac{3}{5}:\dfrac{5}{2}\right)^4\\ =\left(-\dfrac{6}{25}\right)^4\)
\(\left(\dfrac{3}{5}\right)^{12}:\left(\dfrac{9}{25}\right)^5\\ =\left(\dfrac{3}{5}\right)^{12}:\left[\left(\dfrac{3}{5}\right)^2\right]^5\\ =\left(\dfrac{3}{5}\right)^{12}:\left(\dfrac{3}{5}\right)^{10}\\ =\left(\dfrac{3}{5}\right)^2\\ =\dfrac{9}{25}\)
\(\left(\dfrac{2}{3}\right)^8:\left(\dfrac{4}{9}\right)^3=\left(\dfrac{4}{9}\right)^4:\left(\dfrac{4}{9}\right)^3=\dfrac{4}{9}\)
\(27^3:3^2=3^9:3^2=3^7=2187\)
a) Ta có:
\(64^8=\left(2^6\right)^8=2^{6\cdot8}=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{4\cdot12}=2^{48}\)
\(\Rightarrow64^8=16^{12}\)
b) Ta có:
\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{4\cdot10}=\left(\dfrac{1}{2}\right)^{40}\)
Mà: 50 > 40 => `(1/2)^50<(1/2)^40`
c) Ta có:
\(\left(\dfrac{9}{16}\right)^{100}=\left[\left(\dfrac{3}{4}\right)^2\right]^{100}=\left(\dfrac{3}{4}\right)^{200}\)
Mà: `3/4>2/3=>(3/4)^200>(2/3)^200`
\(^{^{ }}\)a,64^8=16^12
b,(1/16)^10<(1/2)^50
c,(2/3)^200>(9/16)^100
CỦA BẠN ĐÂY NẾU SAI THÌ CHO MÌNH XIN LỖI NHÉ
a; 25 x 53 x \(\dfrac{1}{625}\) x 52
= 52 x 53 x \(\dfrac{1}{5^4}\) x 52
= 55 x \(\dfrac{1}{5^4}\) x 52
= 5 x 52
= 53
a)
\(25\cdot5^3\cdot\dfrac{1}{625}\cdot5^2\\ =\left(5^2\cdot5^3\cdot5^2\right)\cdot\dfrac{1}{625}\\ =5^7\cdot\dfrac{1}{5^4}\\ =5^3\)
b)
\(5^2\cdot3^5\cdot\left(\dfrac{3}{5}\right)^2\\ =5^2\cdot3^5\cdot\dfrac{3^2}{5^2}\\ =3^5\cdot3^2\\ =3^7\)
c)
\(\left(-\dfrac{1}{7}\right)^4\cdot49^2\\ =\dfrac{\left(-1\right)^4}{7^4}\cdot\left(7^2\right)^2\\ =\dfrac{1}{7^4}\cdot7^4\\ =1\)
d)
\(\left(\dfrac{1}{16}\right)^2:\left(\dfrac{1}{2}\right)^4\cdot\left(-\dfrac{1}{8}\right)^3\\ =\left[\left(\dfrac{1}{2}\right)^4\right]^2:\left(\dfrac{1}{2}\right)^4\cdot\left[\left(-\dfrac{1}{2}\right)^3\right]^3\\ =\left(\dfrac{1}{2}\right)^8:\left(\dfrac{1}{2}\right)^4\cdot\left(-\dfrac{1}{2}\right)^9\\ =\left(\dfrac{1}{2}\right)^4\cdot\left(-\dfrac{1}{2}\right)^9\\ =\left(\dfrac{1}{2}\right)^4\cdot-\left(\dfrac{1}{2}\right)^9\\ =-\left(\dfrac{1}{2}\right)^{13}\)
\(x^2\) + 6\(x\) + 9 = 25
\(x^2\) + 6\(x\) + 9 - 25 = 0
\(x^2\) + 6\(x\) + (9 - 25) = 0
\(x^2\) + 6\(x\) - 16 = 0
\(x^2\) - 2\(x\) + 8\(x\) - 16 = 0
(\(x^2\) - 2\(x\)) + (8\(x\) - 16) = 0
\(x\)(\(x\) - 2) + 8(\(x-2\)) = 0
(\(x\) - 2)(\(x\) + 8) = 0
\(\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy \(x\) \(\in\) {2; - 8}
cứu mình với