K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

a, Áp dụng định lý Py-ta-go ta có : 

\(^{BC^2=AB^2+AC^2}\)

Mà BC = 10cm

=> \(100cm=AB^2+AC^2\)

Ta co AB tỉ lệ với 3 ; AC tỉ lệ với 4

=> AB thuộc bội của 3 => AB^2 vừa là số chính phương , vừa là bôi của 3   (1)

     AC thuộc bội của 4 => AC^2 vừa là số chính phương , vừa là bội của 4    (2)

Từ (1;2) ta có độ dài của hai cạnh AB và AC là hai số chính phương nhỏ hơn 100 và có tổng là 100

Các số chính phương nhỏ hơn 100 có 4 ; 9 ; 16 ; 25;

36 ; 49 ; 64 ; 81.

Ta thấy trong dãy trên có 81+9 và 36+64 có tổng bằng 100 => hai cạnh góc vuông là ...

do bận nên mình làm mỗi ý a , bạn tự làm nốt

4 tháng 3 2017

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)

\(=\frac{-1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2003}{2004}\right)\left(-\frac{2004}{2005}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}.\frac{2004}{2005}\)

\(=\frac{1}{2005}\)

4 tháng 3 2017

Ta có : \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).......\left(\frac{1}{2005}-1\right)\)

\(=-\frac{1}{2}.\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)........\left(-\frac{2004}{2005}\right)\)

\(=\frac{-1}{2}.\frac{2}{-3}.\frac{-3}{4}..........\frac{2004}{-2005}\)

\(=\frac{-1}{-2005}=\frac{1}{2005}\)

4 tháng 3 2017

mik cũng là cung bọ cạp nè

4 tháng 3 2017

Ta có :

a + b = ab

a - ab + b = 0

a - b(a - 1) = 0

a - 1 - b(a - 1) = - 1

(a - 1)(1 - b) = - 1

=> a - 1 = - 1 ; 1 - b = 1 hoặc a - 1 = 1 ; 1 - b = - 1

=> ( a;b ) = { ( 0;0 ); ( 2;2 ) }

4 tháng 3 2017

Ta có : \(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n+4\right)n}\)

\(=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{n\left(4+n\right)}\right)\)

\(=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{n}-\frac{1}{n+4}\right)\)

\(=-\left(1-\frac{1}{n+4}\right)\)

\(=-\left(\frac{n+4}{n+4}-\frac{1}{n+4}\right)\)

\(=-\frac{n+3}{n+4}\)