K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

A B C x y

\(\widehat{xOA}=\widehat{cOA}\) (gt) (1)

\(\widehat{yOB}=\widehat{COB}\) (gt) (2)

\(\widehat{COA}+\widehat{COB}=\widehat{AOB}=90^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{xOA}+\widehat{yOB}=90^o\)

\(\Rightarrow\widehat{xOy}=\widehat{COA}+\widehat{COB}+\widehat{xOA}+\widehat{yOB}=90^o+90^o=180^o\)

=> Ox và Oy là hai tia đối nhau

 

 

11 tháng 7 2023

a) Vì OB' là tia phân giác của \(\widehat{A'OC}\) nên \(\widehat{A'OB'}=\dfrac{\widehat{A'OC}}{2}=\dfrac{90^o}{2}=45^o\). Suy ra \(\widehat{AOB}=\widehat{A'OB'}\left(=45^o\right)\). Lại có \(\widehat{AOB}+\widehat{BOA'}=\widehat{AOA'}=180^o\) nên \(\widehat{BOB'}=\widehat{A'OB'}+\widehat{BOA'}=180^o\) hay B, O, B' thẳng hàng. Suy ra \(\widehat{AOB}\) và \(\widehat{A'OB'}\) là 2 góc đối đỉnh.

b) Trên cùng 1 nửa mặt phẳng bờ là đường thẳng AA', ta thấy tia OB nằm giữa 2 tia OA và OD, tia OD lại nằm giữa 2 tia OB và OA', do đó \(\widehat{AOB}+\widehat{BOD}+\widehat{DOA'}=\widehat{AOA'}\)  \(\Leftrightarrow45^o+90^o+\widehat{A'OD}=180^o\) \(\Leftrightarrow\widehat{A'OD}=45^o\)

11 tháng 7 2023

a, |\(x\)| = \(\dfrac{1}{5}\)

    \(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)

10 tháng 7 2023

a) 1 sào khoai lang năm 2021 thu hoạch được :

\(2:1,13=2,26\) (tấn)

b) Số tiền 1 sào khoai 2,26 tấn :

\(\left(2,26x9000000\right):2=10170000\) (đồng)

Số tiền bán được năm 2020 :

\(10170000:0,9=11300000\) (đồng)

 

GH
10 tháng 7 2023

giúp em với em đang gấp ạ

Tính

1
10 tháng 7 2023

a) \(\dfrac{32}{5}-\left(-\dfrac{9}{8}+\dfrac{12}{5}\right)+\left(\dfrac{-1}{2}\right)^3\)

\(=\dfrac{32}{5}+\dfrac{9}{8}-\dfrac{12}{5}-\dfrac{1}{8}\)

\(=\dfrac{32}{5}-\dfrac{12}{5}+\dfrac{9}{8}-\dfrac{1}{8}\)

\(=4+1\)

\(=5\)

b) \(\dfrac{15}{17}-3.\left(\dfrac{10}{3}+\dfrac{5}{17}\right)+\left(-1\right)^{2020}\)

\(=\dfrac{15}{17}-10-\dfrac{15}{17}+1=-9\)

c) \(6,5+1,2+3,5-5,2+6,5-4,8\)

\(=6,5+3,5+1,2+6,5-4,8-5,2=10+7,7-10=7,7\)

d) \(3,21.\left(2^2-1,5\right)-2,5.2,22\)

\(=3,21.2,5-2,5.2,22=2,5.\left(3,21-2,22\right)=2,5.0,99=2,475\)

GH
10 tháng 7 2023

ai trl e tick cho ạ

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

9 tháng 7 2023

|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1

Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:

M = (1 + a)(1 + b)(1 + c)

M = (1 + b + a + ab)(1 + c)

M = 1 + b + a + ab + c + bc + ac + abc

M = 1 + ( a + b + c) + (ab + bc + ac) + abc

M = 1 + 2 + (-5) +  3

M = (1+2+3) - 5

M = 1

9 tháng 7 2023

|\(x\)| = 1 ⇒ \(x^2\) = 1

Thay \(x\)2 =  1 vào biểu thức M ta có:

M = (1 + a)(1 +b)(1+c)

M = ( 1 + b + a + ab)(1 + c)

M = 1 + b + a + ab + c + bc + ac + abc

M = 1 + (a+b+c) + (ab+bc + ac) + abc

M = 1 + 2 - 5 + 3

M = 1

 

9 tháng 7 2023

a, 

   (\(x\) + y + z)2

 = ((\(x\) + y) + z)2 

= (\(x\)+y)2+2(\(x\)+y)z+ z2 

\(x^2\) + 2\(x\)y+ y2 + 2\(x\)z + 2yz + z2

\(x^2\) + y2 + z2 + 2\(xy\) + 2yz + 2\(x\)z

b, (\(x\)+y+z)(\(x^2\) + y2 + z2 - \(xy\) - yz - \(x\)z) 

\(x^3\) + \(x\)y\(x\)z\(x^2\)y - \(x\)yz - \(x^2\)z + y\(x^2\) + y+ yz\(x\)y- y2z - \(xyz\) +

+ z\(x^2\) + zy2 + z3 - \(xyz\) - yz2 - \(x\)z2

\(x^{3^{ }}\)+y3+z3 - 3\(x\)yz + (\(x\)z2 - \(x\)z2) - (\(x^2\)y- \(x^2\)y) - (\(x^2\)z - \(x^{2^{ }}\)z) + (y2\(x\) - y2\(x\)) - (y2z - y2z) + (z2y - z2y)

\(x^3\) + y3 + z3 - 3\(xyz\)

 

9 tháng 7 2023

c, 

 VT =  (\(x\) + y + z)3 

VT = (\(x\) + y)3 + 3(\(x\)+y)2z + 3(\(x\) +y)z2 + z3

VT = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 + 3(\(x\)+y)z(\(x+y+z\)) + z3

VT = \(x^3\)+ y3 + z3 + 3\(xy\)(\(x\) +y)  + 3(\(x+y\))z(\(x+y+z\))

VT = \(x^3\) + y3 + z3 + 3(\(x+y\))(\(xy\) + z\(x\) + zy + z2)

VT = \(x^3\) + y3 + z3 + 3(\(x\) + y){ (\(xy+xz\)) + (zy +z2)

VT = \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\) (y+z) + z(y+z)}

VT = \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\))

VT = VP (đpcm)