chứng minh rằng A=2+22+23+...+22024 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
a: \(\left(-\dfrac{1}{3}\right)^2\cdot\sqrt{81}+\left|-2023\right|\)
\(=\dfrac{1}{9}\cdot9+2023\)
=1+2023
=2024
b: \(-\dfrac{5}{11}+\dfrac{2}{7}+\dfrac{-6}{11}+\dfrac{12}{7}+4\cdot3^2\)
\(=\left(-\dfrac{5}{11}-\dfrac{6}{11}\right)+\left(\dfrac{2}{7}+\dfrac{12}{7}\right)+4\cdot9\)
\(=-1+2+36=36+1=37\)
c: \(\dfrac{3}{7}\cdot\dfrac{4}{5}+\dfrac{3}{7}\cdot\dfrac{9}{5}-\dfrac{3}{7}\cdot\dfrac{8}{5}\)
\(=\dfrac{3}{7}\left(\dfrac{4}{5}+\dfrac{9}{5}-\dfrac{8}{5}\right)\)
\(=\dfrac{3}{7}\cdot\dfrac{5}{5}=\dfrac{3}{7}\)
2023 + 4\(^{x-4}\) = 2027
4\(^{x-4}\) = 2027 - 2023
4\(^{x-4}\) = 4
4\(^{x-4}\) = 41
\(x-4\) = 1
\(x=1+4\)
\(x=5\)
Vậy \(x=5\)
Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
3\(^{x+1}\) = 4\(^{x-1}\)
Vì 3 là số lẻ nên 3\(^{x-1}\) là số lẻ \(\forall\) \(x\) \(\in\) N; ⇒ 4\(x-1\) là số lẻ
⇒ 4\(^{x-1}\) = 1 ⇒ 4\(x-1\) = 40 ⇒ \(x-1\) = 0⇒ \(x=1\)
Với \(x\) = 1 ta có: 31+1 = 41-1 ⇒ 32 = 40 ⇒ 9 = 1 (vô lý)
Vậy \(x\) = 1 loại
Kết luận không có giá trị nào của \(x\) là số tự nhiên thỏa mãn đề bài.
Hình lăng trụ tứ giác đều là hình đa diện có hai mặt đáy là hai hình vuông bằng nhau và hai mặt đáy nằm trên hai mặt phẳng song song, các mặt bên là các hình chữ nhật. Tất cả các mặt bên đều song song và bằng nhau đồng thời vuông góc với mặt đáy.
C = \(\dfrac{x+4}{x-1}\) (\(x\) ≠ 1) ⇒ C = 1 + \(\dfrac{5}{x-1}\)
C nguyên Dương khi và chỉ khi: 5 ⋮ \(x-1\) và \(\dfrac{x+4}{x-1}\) > 0
5 ⋮ \(x\) - 1 ⇒ \(x-1\) \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
\(x-1\) | -5 | -1 | 1 | 5 |
\(x\) | -4 | 0 | 2 | 6 |
C = \(\dfrac{x+4}{x-1}\) | 0 | -4 | 6 | 2 |
C > 0 | loại | loại | nhận | nhận |
Theo bảng trên ta có các giá trị nguyên dương của C là: 6; 2
Kết luận các giá trị nguyên dương của C là 6 và 2
2\(\dfrac{4}{5}\) + (- \(\dfrac{3}{7}\) + \(\dfrac{2}{3}\)) : - \(\dfrac{5}{14}\)
= \(\dfrac{14}{5}\) + (\(\dfrac{-9}{21}\) + \(\dfrac{14}{21}\)) : - \(\dfrac{5}{14}\)
= \(\dfrac{14}{5}\) + \(\dfrac{5}{21}\) x (- \(\dfrac{14}{5}\))
= \(\dfrac{14}{5}\) - \(\dfrac{2}{3}\)
= \(\dfrac{42}{15}\) - \(\dfrac{10}{15}\)
= \(\dfrac{32}{15}\)
Ta có: \(\widehat{B_1}=\widehat{B_3}\)(hai góc đối đỉnh)
mà \(\widehat{B_1}=80^0\)
nên \(\widehat{B_3}=80^0\)
Ta có: \(\widehat{B_1}+\widehat{B_2}=180^0\)(hai góc kề bù)
=>\(\widehat{B_2}=180^0-80^0=100^0\)
Ta có: a//b
=>\(\widehat{C_1}=\widehat{B_3}\)(hai góc so le trong)
=>\(\widehat{C_1}=80^0\)
- \(\dfrac{11}{24}\) : \(\dfrac{17}{23}\) - \(\dfrac{11}{24}\) : \(\dfrac{17}{11}\) - \(\dfrac{1}{2}\)
= - \(\dfrac{11}{24}\) x \(\dfrac{23}{17}\) - \(\dfrac{11}{24}\) x \(\dfrac{11}{17}\) - \(\dfrac{1}{2}\)
= - \(\dfrac{11}{24}\) x (\(\dfrac{23}{17}\) + \(\dfrac{11}{17}\)) - \(\dfrac{1}{2}\)
= - \(\dfrac{11}{24}\) x 2 - \(\dfrac{1}{2}\)
= - \(\dfrac{11}{12}\) - \(\dfrac{1}{2}\)
= - \(\dfrac{11}{12}\) - \(\dfrac{6}{12}\)
= - \(\dfrac{17}{12}\)
Ai giúp tui vs
A = 2 + 22 + 23 + .. + 22024
A = 21 + 22 + 23 + ... + 22024
Xét dãy số 1; 2; 3; ...; 2024, đây là dãy số cách đều với khoảng cách là: 2 - 1= 1
Số số hạng của dãy số là: (2024 - 1) : 1+ 1 = 2024
Vì 2024 : 4 = 506
Vậy nhóm 4 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 22 + 23 + 24) + .. + (22021+ 22022 + 22023 + 22024)
A = (2 + 22 + 23 + 24) + ... + 22020.(2 + 22 + 23 + 24)
A = (2 + 22 + 23 + 24).(20 + ... + 22020)
A = (2+ 4 +8+ 16).(20 + ... + 22020)
A = 30.(20 + ...+ 22020) = 10.3.(20+ ...+ 22020) ⋮ 10 (đpcm)