K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

\(\Rightarrow ab=3a-3b\Leftrightarrow ab+3b=3a\)

\(\Leftrightarrow b\left(a+3\right)=3a\Rightarrow b=\dfrac{3a}{a+3}\left(a\ne-3\right)\)

\(\Rightarrow b=\dfrac{3\left(a+3\right)-9}{a+3}=3-\dfrac{9}{a+3}\)

Để b là số nguyên thì 

a+3 phải là ước của 9

\(\Rightarrow a+3=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-12;-4;-2;6\right\}\) 

\(b=\left\{4;12;-6;2\right\}\)

 

12 tháng 5 2022

xin lỗi còn thiếu  trường hợp \(a+3=\pm3\) bạn bổ xung và tính nốt nhé

12 tháng 5 2022

\(=\dfrac{\left(2^3\right)^3.\left(3^2\right)^4-2^8.\left(3^4\right)^2}{\left(2^4\right)^2.\left(3^4\right)^2+\left(2^2\right)^4.\left(3^3\right)^3}=\dfrac{2^9.3^8-2^8.3^8}{2^8.3^8+2^8.3^9}=\)

\(=\dfrac{2^8.3^8.\left(2-1\right)}{2^8.3^8.\left(1+3\right)}=\dfrac{1}{4}\)

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).

 

DD
11 tháng 5 2022

a) Xét tam giác \(AHD\) và tam giác \(AKD\):

\(\widehat{AHD}=\widehat{AKD}\left(=90^o\right)\)

\(AD\) cạnh chung

\(\widehat{HAD}=\widehat{KAD}\) (vì \(AD\) là tia phân giác góc \(A\) của tam giác \(ABC\)) 

Suy ra \(\Delta AHD=\Delta AKD\) (cạnh huyền - góc nhọn) 

\(\Rightarrow AH=AK\).

b) \(\Delta AHD=\Delta AKD\) suy ra \(DH=DK\) suy ra \(D\) thuộc đường trung trực của \(HK\).

\(AH=AK\) suy ra \(A\) thuộc đường trung trực của \(HK\)

suy ra \(AD\) là đường trung trực của \(HK\).

c) Xét tam giác \(AKE\) và tam giác \(AHF\): 

\(\widehat{A}\) chung

\(AH=AK\)

\(\widehat{AHF}=\widehat{AKE}\left(=90^o\right)\)

suy ra \(\Delta AKE=\Delta AHF\) (g.c.g) 

suy ra \(AE=AF\)

Xét tam giác \(AEF\) có: \(\dfrac{AH}{AE}=\dfrac{AK}{AF}\) suy ra \(HK//EF\).

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

Đáp án C

Các bạn muốn giải đáp thắc mắc hoặc kèm thêm toán thì có thể liên hệ nhé

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

11 tháng 5 2022

Đặt \(\left\{{}\begin{matrix}n-5=a^3\left(1\right)\\n+2=b^3\left(2\right)\end{matrix}\right.\) \(\left(a,b\inℤ;a< b\right)\)

\(\left(1\right)\Leftrightarrow n=a^3+5\)

Thay vào (2), ta có \(a^3+5+2=b^3\Leftrightarrow b^3-a^3=7\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)=7\)

Vì \(a< b\Leftrightarrow b-a>0\), mà \(\left(b-a\right)\left(a^2+ab+b^2\right)=7>0\)\(\Rightarrow a^2+ab+b^2>0\)

Ta chỉ xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}b-a=1\\a^2+ab+b^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^2+a\left(a+1\right)+\left(a+1\right)^2=7\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+a+a^2+2a+1=7\)\(\Leftrightarrow3a^2+3a-6=0\)\(\Leftrightarrow a^2+a-2=0\)\(\Leftrightarrow a^2-a+2a-2=0\)\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)=0\)\(\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-2\end{matrix}\right.\) (nhận)

Với \(a=1\) thì \(b=a+1=1+1=2\) (nhận)  từ đó \(n-5=a^3=1^3=1\Rightarrow n=6\)

Thử lại: \(n+2=6+2=8=2^3=b^3\) (nhận)

TH2: \(\left\{{}\begin{matrix}b-a=7\\a^2+ab+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+7\\a^2+a\left(a+7\right)+\left(a+7\right)^2=1\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+7a+a^2+14a+49=1\)\(\Leftrightarrow3a^2+21a+48=0\)\(\Leftrightarrow a^2+7a+16=0\)\(\Leftrightarrow4a^2+28a+64=0\)\(\Leftrightarrow\left[\left(2a\right)^2+2.2a.7+7^2\right]+15=0\)\(\Leftrightarrow\left(2a+7\right)^2+15=0\)\(\Leftrightarrow\left(2a+7\right)^2=-15\) (vô lí)

Vậy ta loại TH2

Do đó để \(n-5\) và \(n+2\) đều là lập phương của 1 số nguyên thì \(n=6\)

11 tháng 5 2022

a) Tcó A thuôc tia phân giác và AB,AC vuông góc với Ox,Oy

--> AB=AC(định lí)

b)  hình như bạn ghi thiếu hay sao á

c) Xét tam giác ABO và tam giác ACO có:

AB=AC(cmt)

AO cạnh chung

B=C=90(gt)

Do đó tam giác ABO = tam giác ACO

--> BO=CO(tương ứng)

hay BO=5cm

Áp dụng định lí Pytago vào tam giác BEO có

BE^2+EO^2=BO^2

BE^2+3^2=5^2

--> BE=4cm

Áp dụng định lí Pytago vào tam giác BCE có:

BE^2+EC^=BC^2

4^2+8^2=BC^2

80=BC^2 Hay BC=\(\sqrt{80}\)

d) Từ câu a ta có:

AB=AC --> tam giác ABC là tam giác cân