K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2022

\(a+b+c=a^3+b^3+c^3-3abc\)

\(\Leftrightarrow a+b+c=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=1\) (do \(a+b+c=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\) (1)

Mặt khác:

\(a+b+c=1\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=1\) (2)

Cộng vế (1) và (2):

\(\Rightarrow a^2+b^2+c^2=1\)

\(\Rightarrow\left(a;b;c\right)=\left(1;0;0\right)\) và các bộ hoán vị của chúng

15 tháng 7 2022

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Mà \(a+b+c=1\)

\(\Rightarrow a^3+b^3+c^3-3abc=a^2+b^2+c^2-ab-bc-ca\)\(=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-a\right)^2+\left(a-c\right)^2=2\)

Vì a, b, c nguyên nên: \(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=1\\\left(c-a\right)^2=1\end{matrix}\right.\) và các hoán vị của nó

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\\left[{}\begin{matrix}b-c=1\\b-c=-1\end{matrix}\right.\\\left[{}\begin{matrix}c-a=1\\c-a=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left[{}\begin{matrix}b=1+c\\b=-1+c\end{matrix}\right.\\\left[{}\begin{matrix}c=1+a\\c=-1+a\end{matrix}\right.\end{matrix}\right.\)

Thay vô \(a+b+c=1\) để tìm a, b, c

(Chú ý lúc kết luận, ghi các nghiệm vừa tìm được và viết thêm cụm "và các hoán vị của nó")

14 tháng 7 2022

Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)

Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 

Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30 

=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30. 

=> a^5 - a chia hết cho 30 

=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*) 

Do (a+b+c) chia hết cho 30 

(*) => (a^5+b^5+c^5) chia hết cho 30

15 tháng 7 2022

Trả lời:

Ta thấy : a5a=a(a41)=a(a21)(a2+1).a5−a=a(a4−1)=a(a2−1)(a2+1).

=a(a1)(a+1)(a24+5)=a(a−1)(a+1)(a2−4+5)

=a(a1)(a+1)(a24)+5a(a1)(a+1)=a(a−1)(a+1)(a2−4)+5a(a−1)(a+1)

=(a2)(a1)a(a+1)(a+2)+5a(a1)(a+1)=(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)

Ta có :(a2)(a1)a(a+1)(a+2)(a−2)(a−1)a(a+1)(a+2)là tích 5 số tự nhiên liên tiếp :

(a2)(a1)a(a+1)(a+2)⇒(a−2)(a−1)a(a+1)(a+2)55và cũng 66( cũng là 3 số tự nhiên liên tiếp )

(a2)(a1)a(a+1)(a+2)⇒(a−2)(a−1)a(a+1)(a+2)3030 (1)(1)

Ta lại có : 5555và (a1)a(a+1)(a−1)a(a+1)66

5a(a1)(a+1)⇒5a(a−1)(a+1)3030(2)(2)

Từ ( 1 ) và ( 2 ) (a2)(a1)a(a+1)(a+2)+5a(a1)(a+1)⇒(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)3030

Hay a5aa5−a3030

Tương tự b5bb5−bvà c5cc5−ccũng chia hết cho 30 

a5+b5+c5(a+b+c)⇒a5+b5+c5−(a+b+c)3030

Mà a+b+ca+b+c3030

a5+b5+c5⇒a5+b5+c53030 (đpcm)

14 tháng 7 2022

Gọi \(a^2=x^2-4x+11\)

\(\Leftrightarrow a^2-\left(x^2-4x+11\right)=0\)

\(\Leftrightarrow a^2-\left(x^2-4x+4\right)-7=0\)

\(\Leftrightarrow a^2-\left(x-2\right)^2=7\)

\(\Leftrightarrow\left(a-x+2\right)\left(a+x-2\right)=7\)

... (Đoạn này thì tự làm nhaa)

15 tháng 7 2022

Đáp án:

x=5x=5

Giải thích các bước giải:

D=x24x+11D=x2−4x+11 là số chính phương

x24x+11=k2(kN)→x2−4x+11=k2(k∈N∗)

(x24x+4)k2=7→(x2−4x+4)−k2=−7

(x2+k)(x2k)=7()→(x−2+k)(x−2−k)=−7(∗)

Do kNk∈N∗

nên xZx∈Z

()⇒(∗) là phương trình ước số của 7−7

Ta có:

7=(1).7=1.(7)=(7).1=7.(1)−7=(−1).7=1.(−7)=(−7).1=7.(−1)

Ta được:

{x+k2=1xk2=7{x+k2=1xk2=7{x+k2=7xk2=1{x+k2=7xk2=1[{x+k−2=−1x−k−2=7{x+k−2=1x−k−2=−7{x+k−2=−7x−k−2=1{x+k−2=7x−k−2=−1


{x=5k=4(loi){x=1k=2(loi){x=1k=4(loi){x=5k=4(nhn)
⇔[{x=5k=−4(loại){x=−1k=2(loại){x=−1k=−4(loại){x=5k=4(nhận)

Vậy x=5

14 tháng 7 2022

ĐK: \(x\ge0\)

Ta có: \(A=\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\Leftrightarrow2A=\dfrac{2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}+1+1}{2\sqrt{x}+1}=\dfrac{1}{2\sqrt{x}+1}+1\)

Ta thấy vì: \(2\sqrt{x}\ge0\Leftrightarrow2\sqrt{x}+1\ge1\Leftrightarrow\dfrac{1}{2\sqrt{x}+1}\le1\)

\(\Rightarrow2A\le1+1=2\Leftrightarrow A\le1\)

Dấu ''='' xảy ra khi x = 0

15 tháng 7 2022

Với \(x > 0,x \ne 1\) có:

\(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{2\sqrt{x}+2}-\dfrac{x+1}{1-x}\right):\dfrac{x+2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2+2(x+1)}{2(\sqrt{x}-1)(\sqrt{x}+1)}.\dfrac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)^2}\)

\(=\dfrac{(\sqrt{x}+1-\sqrt{x}+1)(\sqrt{x}+1+\sqrt{x}-1)+2x+2}{2(\sqrt{x}-1)}.\dfrac{\sqrt{x}}{(\sqrt{x}+1)^2}\)

\(=\dfrac{2.2\sqrt{x}+2x+2}{2(\sqrt{x}-1)}.\dfrac{\sqrt{x}}{(\sqrt{x}+1)^2}\)

\(=\dfrac{2(\sqrt{x}+1)^2}{2(\sqrt{x}-1)}.\dfrac{\sqrt{x}}{(\sqrt{x}+1)^2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

14 tháng 7 2022

Dòg đầu lỗi lệnh, nhg dòg đó là đề bài nên ko ảnh hưởng j nhé!

15 tháng 7 2022

A B C D E F M N P H

a/

Xét tg vuông AEB và tg vuông AFC có

\(\widehat{ABE}=\widehat{ACF}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg AEB đồng dạng với tg AFC (g.g.g)

b/

 tg AEB đồng dạng với tg AFC (cmt)

\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét tg AEF và tg ABC có

\(\widehat{BAC}\) chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) 

=> tg AEF đồng dạng với tg ABC (c.g.c)

c/

Ta có

\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2\) (hai tg đồng dạng tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

Ta biết 3 cạnh của tg ABC, áp dụng công thức Hê rông tính được diện tích tg ABC .

Áp dụng công thức \(S_{ABC}=\dfrac{AC.BE}{2}\) từ đó tính được BE

Áp dụng Pitago cho tg vuông AEB tính được \(AE=\sqrt{AB^2-BE^2}\)

Từ đó suy ra được tỷ số đồng dạng \(\dfrac{AE}{AB}\)

(Câu này bạn tự tính toán nhé, lưu ý tính dưới dạng phân số)

 

 

 

14 tháng 7 2022

`2x+3=10x-4x-9`

`<=>10x-4x-2x=3+9`

`<=>6x=12`

`<=>x=2`

Vậy `S=`{`2`}

14 tháng 7 2022

Sửa:

`2x+3=10x-4x-9`

`<=>10x-4x-2x=3+9`

`<=>4x=12`

`<=>x=3`

14 tháng 7 2022

\(x^2-2x+3=\left(x^2-2x+1\right)+2-\left(x-1\right)\)

\(x^2-2x+3-x^2+2x-1-2+x-1=0\)

\(x-1=0\)

\(x=1\)

14 tháng 7 2022

`x^{2}-2x+3=(x^2-2x+1)+2-(x-1)`

`<=>x^2-2x+3=x^2-2x+1+2-x+1`

`<=>x=0`

Vậy S={`0`}