Cho tam giác ABC vuông tại A, có đường cao AH. Tính chu vi và diện tích tam giác ABC trong hai trường hợp:
1) BC=15cm, AH=7.2cm
2) AB=21cm, HC=22,4cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`H=1+2.6+3.6^2+4.6^3+...+100.6^99`
`6H = 6+2.6^2+3.6^3+4.6^4+...+100.6^100`
`6H - H = (6+2.6^2+3.6^3+4.6^4+...+100.6^100)-(1+2.6+3.6^2+4.6^3+...+100.6^99)`
`5H = (6 - 2.6) + (2.6^2 - 3.6^2) + (3.6^3 - 4.6^3) + ... + (99. 6^99 - 100.6^99) + 100.6^100 - 1`
`5H = 100.6^100 - 1 + (-6) + (-6^2) + (-6^3) + ... + (-6^99)`
`5H = 100.6^100 - 1 - (6+6^2+6^3 + ... + 6^99)`
Đặt `S = 6+6^2+6^3 + ... + 6^99`
`6S = 6^2+6^3+6^4 + ... + 6^100`
`6S - S = (6^2+6^3+6^4 + ... + 6^100) - ( 6+6^2+6^3 + ... + 6^99)`
`5S = 6^100 - 6`
`S = ( 6^100 - 6)/5`
Khi đó: `5H = 100.6^100 - 1 - S`
`5H = 100.6^100 - 1 - ( 6^100 - 6)/5`
`5H = (500.6^100)/5 - 5/5 - ( 6^100 - 6)/5`
`5H = (500.6^100 - 5 - 6^100 + 6)/5`
`H = (499 . 6^100 + 1)/5`
Vậy ...
`S = 3^100 -3^99 +3^98 -3^97 +...+3^2 -3 +1`
`3S = 3^101 - 3^100 +3^99- 3^98+...+ 3^3 -3^2 +3`
`S + 3S = (3^100 -3^99 +3^98 -3^97 +...+3^2 -3 +1) + (3^101 - 3^100 +3^99- 3^98+...+ 3^3 -3^2 +3)`
`4S = 3^101 + (3^100 - 3^100) + (3^99 - 3^99) + ... + (3 - 3) + 1`
`4S = 3^101 + 1`
`S = (3^101 + 1)/4`
a: Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
=>x=3k; y=4k; z=5k
\(2x^2+2y^2+3z^2=-100\)
=>\(2\left(3k\right)^2+2\cdot\left(4k\right)^2+3\cdot\left(5k\right)^2=-100\)
=>\(125k^2=-100\)
=>\(k^2=-\dfrac{4}{5}\)(vô lý)
vậy: \(\left(x;y;z\right)\in\varnothing\)
b: 2x=y/3=z/5
=>\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
=>\(x=\dfrac{1}{2}k;y=3k;z=5k\)
\(x+y-\dfrac{z}{2}=-20\)
=>\(\dfrac{1}{2}k+3k-\dfrac{5k}{2}=-20\)
=>k=-20
=>\(x=\dfrac{1}{2}\cdot\left(-20\right)=-10;y=3\cdot\left(-20\right)=-60;z=5\cdot\left(-20\right)=-100\)
Ta có
\(111=3.37\Rightarrow n+2=\left\{3;37;111\right\}\Rightarrow n=\left\{1;35;109\right\}\)
\(\Rightarrow n-2=\left\{-1;33;107\right\}\)
Ta thấy n-2 =33 là bội của 11
=> n=35
\(\left(1+2+3+...+2017\right)\times\left(1717\times18-1818\times17\right)\\ =\left(1+2+3+...+2017\right)\times\left(17\times101\times18-18\times101\times17\right)\\ =\left(1+2+3+...+2017\right)\times0\\ =0\)
Đặt \(A=-2^{49}-2^{48}-...-2^1-1\)
\(\Rightarrow-A=2^{49}+2^{48}+...+2^1+1\\ \Rightarrow-2A=2^{50}+2^{49}+...+2^2+2^1\\ \Rightarrow-A-\left(-2A\right)=\left(2^{49}+2^{48}+...+2^1+1\right)-\left(2^{50}+2^{49}+...+2^2+2^1\right)\\ A=1-2^{50}\)
Thay vào \(2^{50}-2^{49}-2^{48}-...-2^1-1\) được:
\(2^{50}-2^{49}-2^{48}-...-2^1-1\\
=2^{50}+1-2^{50}\\
=1\)
`S = 2^50 -2^49 -2^48 -...-2^1 -1`
`2S = 2^51 - 2^50 - 2^49 - ... - 2^2 - 2`
`2S - S = (2^51 - 2^50 - 2^49 - ... - 2^2 - 2) - (2^50 -2^49 -2^48 -...-2^1 -1)`
`S = 2^51 - 2^50 - 2^49 - ... - 2^2 - 2 - 2^50 +2^49 +2^48 +...+2^1 +1`
`S = 2^51 - 2^50 - 2^50 + 1`
`S = 2^51 - (2^50 + 2^50) + 1`
`S = 2^51 - 2.2^50 + 1`
`S = 2^51 - 2^51 + 1`
`S = 1`