Tìm tất cả các số nguyên \(x,y\) thỏa mãn \(x>y>0\) và \(x^3+3y=y^3+7x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi kế hoạch XN1 là x sản phẩm; kế hoạch XN2 là y sản phẩm
Ta có hệ PT
\(\left\{{}\begin{matrix}x+y=360\\112\%.x+110\%.y=400\end{matrix}\right.\)
Giải hệ PT trên bạn tự làm nốt nhé
Gọi \(\overline{ab}=10a+b\) là số tự nhiên cần tìm (a>b)
Theo đề ta có
\(\left\{{}\begin{matrix}a+b=8\\10a+b-\left(10b+a\right)=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\10a+b-10b-a=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\9a-9b=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=12\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
Vậy số tự nhiên đó là 62
Gọi số đó là ab
Ta có : a + b = 8 (1)
Và ab - 36 = ba (2)
Từ (2) ta có : ab - ba = 36
<=> 10a + b - 10b - a = 36
<=> 9a - 9b = 36
<=> 9( a - b) = 36
<=> a - b = 4 (3)
Kết hợp (1) và (3) ta trở về bài toán tổng - hiệu
Số a là : (8 + 4):2 = 6
Số b là :8 - 6 = 2
Vậy số bạn đầu là 62
Gọi 2 số cần tìm lần lượt là : x và y ( x>y)
Theo bài ra ta có : \(\left\{{}\begin{matrix}x+y=156\left(\cdot\right)\\x:y=6\left(dư9\right)\left(\cdot\cdot\right)\end{matrix}\right.\)
Từ \(\left(\cdot\cdot\right)\Rightarrow x=6y+9\)
Thế \(x=6y+9\) vào \(\left(\cdot\right)\) ta được :
\(6y+9+y=156\)
\(\Leftrightarrow7y+9=156\)
\(\Leftrightarrow7y=147\)
\(\Leftrightarrow y=21\)
\(\Rightarrow x=135\)
Vậy.........
Bạn có chắc đây là bài lớp 9 không vậy ạ.
Gọi 2 số cần tìm là a;b (a>b;a,b>0)
Theo đề ta có :
\(\left\{{}\begin{matrix}a+b=156\\a=6b+9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=156\\a-6b=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7b=147\\a-6b=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=135\\b=21\end{matrix}\right.\)
Vậy 2 số đó là 135 và 21
Đổi 3 giờ 30 phút = 3,5 giờ
Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)
2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)
Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)
Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)
Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\) = \(\dfrac{2}{35}\)(bể)
Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)
Kết luận:.....
Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)
3h 30 phút = 3,5 h
Cả hai vòi cùng chảy trong 1 giờ:
1/x + 1/y = 1/3,5 (1)
Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:
3/x + 2/y = 4/5 (2)
Đặt u = 1/x; v = 1/y
(1) ⇔ u + v = 2/7
⇔ u = 2/7 - v
(2) ⇔ 3u + 2v = 4/5 (3)
Thế u = 2/7 - v vào (3) ta có:
(3) ⇔ 3.(2/7 - v) + 2v = 4/5
⇔ 6/7 - 3v + 2v = 4/5
⇔ -v = 4/5 - 6/7
⇔ -v = -2/35
⇔ v = 2/35
Thế v = 2/35 vào u = 2/7 - v, ta được:
u = 2/7 - 2/35
⇔ u = 8/35
*) Với u = 8/35
⇔ 1/x = 8/35
⇔ x = 35/8 (nhận)
*) Với v = 2/35
⇔ 1/y = 2/35
⇔ y = 35/2 (nhận)
Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể
Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể
Ta có \(\dfrac{a^2}{b^2}+1\ge2.\dfrac{a}{b}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được:
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+3\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (*)
Mà ta lại có \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=3\)
\(\Leftrightarrow-3\ge-\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) (**)
Cộng theo vế (*) và (**), ta được đpcm.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a/
Xét tg vuông ABC
\(AH^2=BH.HC\) (Trong tg vuông bình phương đường đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{2.6}=2\sqrt{3}\)
\(BC=BH+HC=2+6=8\)
\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB=\sqrt{2.8}=4\)
b/
Xét tg vuông ABH
\(\sin B=\dfrac{AH}{AB}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)
Xét tg vuông ACH
\(\tan C=\dfrac{AH}{HC}=\dfrac{2\sqrt{3}}{6}=\dfrac{\sqrt{3}}{3}\)
c/
a) \(AH^2=HB.HC=2.6=12\Rightarrow AH=2\sqrt[]{3}\left(cm\right)\)
\(AB^2=AH^2+BH^2=12+4=16\Rightarrow AB=4\left(cm\right)\left(Pitago\right)\)
b) \(SinB=\dfrac{AH}{AB}=\dfrac{2\sqrt[]{3}}{4}=\dfrac{\sqrt[]{3}}{2}\)
\(tanC=\dfrac{AH}{HC}=\dfrac{2\sqrt[]{3}}{6}=\dfrac{\sqrt[]{3}}{3}\)
Câu C bạn xem lại đề