K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2024

\(B=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(a+2\sqrt{a}+1\right)\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)

\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{x+y}{xy}\right).\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\right)\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{x-y}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)

\(=\dfrac{x-y}{xy\sqrt{xy}}:\left[\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]=\dfrac{x-y}{xy\sqrt{xy}}.xy\)

\(=\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}=\dfrac{-2\sqrt{3}}{\sqrt{4-3}}=-2\sqrt{3}\)

NV
14 tháng 8 2024

\(A=\dfrac{\sqrt{2}\left(1+\sqrt{5}\right)}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{\sqrt{2}\left(1-\sqrt{5}\right)}{2-\sqrt{6-2\sqrt{5}}}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{5}\right)}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{\sqrt{2}\left(1-\sqrt{5}\right)}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(1-\sqrt{5}\right)}{2-\left(\sqrt{5}-1\right)}\)

\(=\dfrac{\sqrt{2}\left(1+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(1-\sqrt{5}\right)}{3-\sqrt{5}}\)

\(=\sqrt{2}\left(\dfrac{\left(1+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(1-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\right)\)

\(=\sqrt{2}.\left(\dfrac{-4}{9-5}\right)=-\sqrt{2}\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{13^2-5^2}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(cosBAH=\dfrac{AH}{AB}=\dfrac{60}{13}:5=\dfrac{12}{13}\)

nên \(\widehat{BAH}\simeq23^0\)

13 tháng 8 2024

loading...

​\(\dfrac{1}{1\sqrt{2}+2\sqrt{1}}+\dfrac{1}{2\sqrt{3}+3\sqrt{2}}+...+\dfrac{1}{99\sqrt{100}+100\sqrt{99}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

\(3\left(x^2+2x-1\right)-2\left(x^2+3x-1\right)+5x^2=0\)

=>\(3x^2+6x-3-2x^2-6x+2+5x^2=0\)

=>\(6x^2-1=0\)

=>\(6x^2=1\)

=>\(x^2=\dfrac{1}{6}\)

=>\(x=\pm\dfrac{\sqrt{6}}{6}\)

a:Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có \(\widehat{AKB};\widehat{ACB}\) là các góc nội tiếp chắn cung AB

nên \(\widehat{AKB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AHE}\left(=90^0-\widehat{DAC}\right)\)

nên \(\widehat{AKB}=\widehat{AHE}\)

=>\(\widehat{AHK}=\widehat{AKH}\)

=>AK=AH

b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{CEF}+\widehat{AEF}=180^0\)

nên \(\widehat{AEF}=\widehat{ABC}\)

Gọi Ax là tiếp tuyến tại A của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

DO đó: \(\widehat{xAC}=\widehat{ABC}\)

=>\(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FE//Ax

mà Ax\(\perp\)OA

nên OA\(\perp\)EF

NV
13 tháng 8 2024

a.

\(\sqrt{x^2-4x+1}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-4x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-4x+1=0\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{1}{4}\)

b.

\(\sqrt{5x^2-2x+2}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\5x^2-2x+2=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\4x^2-4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{1}{2}\)

NV
13 tháng 8 2024

c.

\(\sqrt{x^2-8x+16}=4-x\)

\(\Leftrightarrow\sqrt{\left(4-x\right)^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

\(\Leftrightarrow4-x\ge0\)

\(\Rightarrow x\le4\)

d.

\(\sqrt{3x+1}=\sqrt{4x-3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-3\ge0\\3x+1=4x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\end{matrix}\right.\)

\(\Rightarrow x=4\)

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H e BC) Bài BC = 10cm và sinC=3/4 Tình độ dài các đoạn thẳng BH,CH,AB,AC?   Bài 3: Cho tam giác ABC cân tại A, B = 65', đường cao CH = 3,6cm. Tính diện tích tam giác ABC?   Bài 4: Cho tam giác ABC vuông tại A, AB-17cm, C=62'. Tính độ dài đường trung tuyển CM?   Bài 6 Cho ABC vuông tại A. Biết BC= 50cm, tanB = 4/3. Tỉnh khoảng cách từ A đến BC và độ dài đường phân...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H e BC) Bài BC = 10cm và sinC=3/4 Tình độ dài các đoạn thẳng BH,CH,AB,AC?

  Bài 3: Cho tam giác ABC cân tại A, B = 65', đường cao CH = 3,6cm. Tính diện tích tam giác ABC?
  Bài 4: Cho tam giác ABC vuông tại A, AB-17cm, C=62'. Tính độ dài đường trung tuyển CM?

  Bài 6 Cho ABC vuông tại A. Biết BC= 50cm, tanB = 4/3. Tỉnh khoảng cách từ A đến BC và độ dài đường phân giác AD của tam giác ABC
  Bài 7. Cho tam giác ABC vuông tại A, đường cao AH (H e BC). Biết B = 60', BC = 10cm. Tính diện
tích tam giác ABH ( kết quả làm tròn đến chữ số thập phân thứ nhất).

  Bài 8. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm và Cos (HAB)= 2/3. Tính chu và diện tích tam giác AHC
  Bài 9. Cho tam giác ABC vuông tại A, đường cao AH và phân giác AD. Biết :AB=9cm , AC=12cm.Tính diện tích tam giác ABD

2
13 tháng 8 2024

Bài 2:

Xét tam giác ABC vuông tại A ta có:

\(sinC=\dfrac{AB}{BC}=>\dfrac{AB}{BC}=\dfrac{3}{4}\\ =>AB=\dfrac{3}{4}BC=\dfrac{3}{4}\cdot10=\dfrac{15}{2}\left(cm\right)\) 

Áp dụng định lý Pythagore cho tam giác ABC ta có:

\(AB^2+AC^2=BC^2\\ =>\left(\dfrac{15}{2}\right)^2+AC^2=10^2\\ =>AC=\sqrt{10^2-\left(\dfrac{15}{2}\right)^2}=\dfrac{5\sqrt{7}}{2}\left(cm\right)\)

Áp dụng hệ thức lượng ta có:

\(AB^2=BC\cdot BH=>BH=\dfrac{AB^2}{BC}=\left(\dfrac{15}{2}\right)^2:10=\dfrac{225}{40}\left(cm\right)\\ AC^2=BC\cdot CH=>CH=\dfrac{AC^2}{BC}=\left(\dfrac{5\sqrt{7}}{2}\right)^2:10=\dfrac{175}{40}\left(cm\right)\)

Bài 9:

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{BC}=\dfrac{3}{7}\)

=>\(S_{ABD}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)