Tìm số tự nhiên a Lớn nhất biết 80 chia hết cho a và 70 chia hết cho a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-2\right)^2=14-2\cdot5^2\)
=>\(\left(3x-2\right)^2=14-2\cdot25=14-50=-36\)
mà \(\left(3x-2\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
\(\left(3x-2\right)^2=14-2.5^2\)
\(\Rightarrow\left(3x-2\right)^2=14-2.25\)
\(\Rightarrow\left(3x-2\right)^2=14-50\)
\(\Rightarrow\left(3x-2\right)^2=-36\)
Vì \(\left(3x-2\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
a: A=1-2-3+4+5-6-7+8+...+1997-1998-1999+2000
=(1-2-3+4)+(5-6-7+8)+...+(1997-1998-1999+2000)
=0+0+...+0=0
b: B=1+2-3-4+5+6-7-8+...+1997+1998-1999-2000
=(1+2-3-4)+(5+6-7-8)+...+(1997+1998-1999-2000)
=(-4)+(-4)+...+(-4)
\(=-4\cdot500=-2000\)
Gọi số cần tìm có dạng là \(\overline{ab}\)
Viết thêm chữ số 3 vào giữa hai chữ số thì số mới gấp 9 lần số phải tìm nên \(\overline{a3b}=9\cdot\overline{ab}\)
=>100a+30+b=9(10a+b)
=>100a+30+b-90a-9b=0
=>10a-8b+30=0
=>5a-4b=-15
=>a=1;b=5
Vậy: Số cần tìm là 15
\(A=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{33\cdot37}\\ =\dfrac{1}{4}\cdot\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{33\cdot37}\right)\\ =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{33}-\dfrac{1}{37}\right)\\ =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{37}\right)\\ =\dfrac{1}{4}\cdot\dfrac{36}{37}\\ =\dfrac{9}{37}\)
\(A=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{33\cdot37}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{33\cdot37}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{33}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{37}\right)=\dfrac{1}{4}\cdot\dfrac{36}{37}=\dfrac{9}{37}\)
Bài 1:
\(D=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}=\dfrac{49}{50}\)
Bài 2:
Gọi số học sinh khối 6 là x(bạn)
(Điều kiện: \(x\in Z^+\))
Nếu xếp hàng 10;12;15 đều dư 3 bạn nên \(x-3\in BC\left(10;12;15\right)\)
=>\(x-3\in B\left(60\right)\)
=>\(x-3\in\left\{60;120;180;240;300;360;420;...\right\}\)
=>\(x\in\left\{63;123;183;243;303;363;423\right\}\)
mà x<=400
nên \(x\in\left\{63;123;183;243;303;363\right\}\)(1)
Khi xếp hàng 11 thì vừa đủ nên \(x\in B\left(11\right)\left(2\right)\)
Từ (1),(2) suy ra x=363
vậy: Khối 6 có 363 bạn
Bài 1:
\(D=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{50}{50}-\dfrac{1}{50}\\ =\dfrac{49}{50}\)
a: \(80=2^4\cdot5\)
=>Ư(80)={1;-1;2;-2;4;-4;5;-5;8;-8;10;-10;16;-16;20;-20;40;-40;80;-80}
b: Cái gì của 6 vậy bạn?
\(60=2^2.3.5\\ 63=3^2.7\\ \Rightarrow BCNN\left(60;63\right)=2^2.3^2.5.7=1260\)
80 chia hết cho a
=> a ∈ Ư(80)
70 chia hết cho a
=> a ∈ Ư(70)
=> a ∈ ƯC(80; 70)
Mà a lớn nhất
=> a ∈ ƯLCN(80; 70)
Ta có:
\(80=2^4\cdot5\\ 70=2\cdot5\cdot7\\ =>a=ƯCLN\left(80;70\right)=2\cdot5=10\)
=> a = 10
Để \(\left\{{}\begin{matrix}80⋮a\\70⋮a\end{matrix}\right.\) và \(a\) lớn nhất thì
\(=>a\inƯCLN\left\{70;80\right\}\)
Ta có:
\(80=2^4.5\)
\(70=7.5.2\)
\(=>ƯCLN\left\{70;80\right\}=2.5=10\)
\(=>a=10\)
Vậy số tự nhiên \(a\) là \(10\)