Cho tam giác ABC vuông tại A biết bán kính đường tròn ngoại tiếp là 37 ; bán kính đường tròn nội tiếp là 5 . Tính các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử A là số lớn, B là số bé
và A + B = ab (a; b là chữ số ; a khác 0)
=> A - B = ba
+) (A + B) + (A - B) = ab + ba => 2.A = 11.(a + b) => A chia hết cho 11 . Mà A có 2 chữ số => A \(\in\) {11; 22; 33;..; 99 }
+) (A + B) - (A - B) = ab - ba => 2.B = 9(a - b)
=> a - b chẵn. Hơn nữa, a; b là chữ số và B có 2 chữ số nên a - b \(\in\) {4;6;8} => B \(\in\) {18; 27; 36}
Mặt khác, ta có A > B và A + B ; A - B đều là số có 2 chữ số nên với B \(\in\) {18; 27; 36} thì A \(\in\) { 33;44; 55;66; 77}
Ta có bảng sau:
A | 33 | 33 | 33 | 44 | 44 | 44 | 55 | 55 | 55 | 66 | 66 | 66 | 77 | 77 | 77 |
B | 18 | 27 | 36 | 18 | 27 | 36 | 18 | 27 | 36 | 18 | 27 | 36 | 18 | 27 | 36 |
A-B | 15 | 6 | 3 | 26 | 17 | 8 | 37 | 28 | 19 | 48 | 39 | 30 | 59 | 50 | 41 |
A+B | 51 | 60 | 69 | 62 | 71 | 80 | 73 | 82 | 91 | 84 | 93 | 102 | 95 | 104 | 113 |
Chọn | Chọn | Loại | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn | Loại | Chọn | Loại | Loại |
Vậy có 11 cặp số thỏa mãn
Gọi; M là trung điểm của AC; G là trọng tâm của tam giác ABC. Nối E với G; O với D
+) Vì G là trong tâm của tam giác ABC => MG = \(\frac{1}{3}\)MB => MG/ MB = \(\frac{1}{3}\)
E là trong tâm của tam giác ACD => ME = \(\frac{1}{3}\) MD => ME/ MD = \(\frac{1}{3}\)
Tam giác DMB có MG/ MB = ME/MD (= \(\frac{1}{3}\)) => EG // AB (Định lí Ta lét)
Vì O là tâm đường tròn ngoại tiếp tam giác ABC => O là giao của 3 đường trung trực => OD là đường trung trực của AB => OD vuông góc với AB
=> EG vuông góc với OD (1)
+) Tam giác ABC cân tại A có AO là đường trung trực nên đông thời là đường trung tuyến
Mà AG cũng là đường trung tuyến (Vì G là trọng tâm tam giác) => AO trùng với AG => A; O; G thẳng hàng
Mặt khác AO vuông góc với BC ( vì AO là đường trung trực của đoạn BC)
DM // BC (vì DM là đường trung bình của tam giác ABC)
=> AO vuông góc với BC => OG vuông góc với BC (2)
Từ (1)(2) ta có: OD; OG là hai đường cao của tam giác DEG mà OD cắt OG = O => O là trực tâm của tam giác DEG
=> OE vuông góc với DG
Hay OE vuông góc với DC
a) +) Gọi I là trung điểm của CD; CD là dây cung của (O) => OI vuông góc với CD
Mà AH | CD; BK | CD => OI // AH // BK
Hình thang AHKB có OI // AH // BK; O là trung điểm của AB => I là trung điểm HK => IH = IK
Mà IC = ID (Vì I là trung điểm của CD)
=> IH - IC = IK - ID => CH = DK
b) Qua I kẻ d // AB cắt AH; BK lần lươt tại M ; N
+) Chứng minh S(IMH) = S(INK):
Tam giác IMH và INK có: góc IHM = IKN (= 90o) ; IH = IK; góc HIM = KIN (đối đỉnh)
=> tam giác IMH = INK (g- c- g)
=> S(IMH) = S(INK)
Mà có: S(AHKB) = S(AHINB) + S(INK); S(AMNB) = S(AHINB) + S(IMH)
=> S(AHKB) = S(AMNB) (1)
Kẻ CC'; II'; DD' vuông góc với AB
+) Dễ có: Tứ giác AMNB là hình bình hành (MN // AB; AM // BN) => S(AMNB) = II'. AB (2)
+) Ta có CC' // DD' => T/g C'CDD' là hình thang
Lại có II' // CC' // DD' và I là trung điểm của CD => I' là trung điểm của C'D'
=> II' là đường trung bình của hình thang C'CDD' => II' = (CC" + DD')/ 2
+) S(ACB) = CC'. AB / 2 ; S(ADB) = DD'.AB / 2 => S(ACB) + S(ADB) = (CC' + DD').AB / 2 = II'.AB (3)
Từ (1)(2)(3) => S(AHKB) = S(ACB) + S(ADB)
c) Theo câu b) S(AHKB) = II'.AB = 30. II'
Xét tam giác vuông OII': II' < OI => S(AHKB) < 30.OI
AB = 30 => OC = AB /2 = 15
OI2 = OC2 - CI2 = 152 - 92 = 144 => OI = 12
=> S(AHKB) < 30.12 = 360
Vậy Smax (AHKB) = 360
Cm tam giác IBK cân tại I
TAm giác ABK v tại A => AKB + ABK = 90 độ (1)
ABK = CBK ( BI là pg ) (2)
Từ (1) và (2) => AKB + KBC = 90 độ (3)
gọi AH vg BC tại H
Tam giác IBH v tại H => BIH + KBC = 90 độ (4)
Từ (3) và (4) => AKB = BIH hay AKB = AIK ( AIK = BIH đối đỉnh )
=> tam giác AIK cân tịa A
Vẽ đường thẳng vg AB tại A cắt BI tại K , kẻ AH vg BK tại H
bạn cm Tam giác AIK cân tại A => AH là đg cao vừa là trưng tuyến => IH = KH
Đặt IH = x => KH = x
Tam giác AIK cân => AI = AK = 2 căn 5
Tam giác ABK vuông tại A , theo HTL: :
\(AK^2=HK.BK\Leftrightarrow\left(2\text{ }\sqrt{5}\right)^2=x\left(2x+3\right)\)
=> \(20=2x^2+3x\)
giải x sau đó áp dụng py ta go tính AB
Bài hay quá!
Điểm cách đều tam giác ở đây chắc là tâm đường tròn nội tiếp?
Gọi điểm tiếp xúc của đường tròn nội tiếp (O) với hai cạnh BC,AB là D,F. Gọi M là trung điểm của BC và phân giác AO cắt đường tròn ngoại tiếp tam giác ABC ở K.
Ta kí hiệu \(a,b,c\) là độ dài ba cạnh BC,CA,AB như thông thường. Ta có ngay \(b+c=2a,\)(do giả thiết). Mặt khác \(AF=\frac{b+c-a}{2}=\frac{a}{2}=BM\). Mặt khác \(\angle MBK=\frac{\angle A}{2}=\angle FAO\). Suy ra \(\Delta FAO=\Delta MBK\) (cạnh huyền, cạnh góc vuông). Do vậy \(\text{AO=BK, FO=KM}\), suy ra \(OD=KM\). . Gọi \(T=AK\cap BC\) suy ra \(T\) là trung điểm \(KO\).
Cuối cùng để ý rằng \(\angle OBK=\frac{B}{2}+\frac{A}{2}=\angle BOK\to\Delta OBK\) cân ở \(K\), do đó \(KB=KO=KA\to AO=2OT.\) Vậy ta có \(\frac{AO}{OT}=2=\frac{AG}{GN}\to\) theo định lý Ta-let đảo thì OG song song BC.
Bài này hay đến nỗi nên thơ, hay đến nỗi nỗi làm rung động các nhà bác học toán lừng danh trên thế giới
Ta có \(b\left(a^2-2\right)=a\left(ab+2\right)-2\left(a+b\right)\). Do \(a^2-2\vdots ab+2\) nên \(2\left(a+b\right)\vdots ab+2\to ab+2\le2a+2b\to\left(a-2\right)\left(b-2\right)\le2\).
Với \(a=1\to-\frac{1}{b+2}\in Z\), loại
Với \(a=2\to\frac{4}{2b+2}\in Z\to2b+2=4\to b=1\)
Với \(a=3\to\frac{7}{3b+2}\in Z\to3b+2=7\to\) loại
Với \(a=4\to\frac{14}{4b+2}\in Z\to4b+2=14\to b=3.\)
Với \(a\ge5\to b-2\le\frac{2}{a-2}
Chứng minh: (bài toán phụ): tam giác ABC có BC = a; AC - b; AB = c. Chứng minh: b2 = a2 + c2 - 2ac. cosB
kẻ đường cao AH .
Áp dụng ĐL Pi ta go trong tam giác vuông AHC có: b2 = AH2 + CH2 = AH2 + (BC - BH)2 = (AH2 + BH2 ) + BC2 - 2.BH.BC
=> b2 = AB2 + BC2 - 2.AB. cosB . BC = c2 + a2 - 2ca. cosB
a)
Gọi G là giao của BM và CN
Áp dụng ĐL Pi ta go trong tam giác vuông GBC có: GB2 + GC2 = BC2 = a2 (*)
Áp dụng kết quả bài toán phụ ( chứng minh trên) trong tam giác BMC ta có:
BM2 = BC2 + CM2 - 2.CM . BC. cos C
Thay CM = b/2 ; cos C = \(\frac{a^2+b^2-c^2}{2ab}\) ta được BM2 = a2 + \(\frac{b^2}{4}\) - 2.\(\frac{b}{2}\). a. \(\frac{a^2+b^2-c^2}{2ab}\) = ...= \(\frac{2a^2+2c^2-b^2}{4}\)
Áp dụng tương tự, trong tam giác CNB có: CN2 = \(\frac{2b^2+2a^2-c^2}{4}\)
Vì G là trọng tâm tam giác ABC nên GB = \(\frac{2}{3}\) BM ; GC = \(\frac{2}{3}\) CN
=> GB2 = \(\frac{4}{9}\)BM2 = \(\frac{4}{9}\).\(\frac{2a^2+2c^2-b^2}{4}\)
GC2 = \(\frac{4}{9}.\frac{2b^2+2a^2-c^2}{4}\)
Thay vào (*) ta được : \(a^2=\frac{4\left(2a^2+2c^2-b^2\right)}{36}+\frac{4\left(2b^2+2a^2-c^2\right)}{36}\)
=> 36a2 = 16a2 + 4c2 + 4b2
=> 5a2 = b2 + c2 => a2 = (b2 + c2)/5
BĐT <=> \(\sqrt{\frac{x+yz}{xyz}}+\sqrt{\frac{y+xz}{xyz}}+\sqrt{\frac{z+xy}{xyz}}\ge1+\sqrt{\frac{1}{xy}}+\sqrt{\frac{1}{yz}}+\sqrt{\frac{1}{xz}}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
Khi đó \(a+b+c=1\)
BĐT <=>\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Ta có \(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)
Khi đó \(VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=VP\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=3
BĐT cho tương đương với
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Với \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z};a+b+c=1\)
Ta có:
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}\)
\(=\sqrt{a^2+a\left(b+c\right)+bc}\ge\sqrt{a^2+2a\sqrt{bc}+bc}=a+\sqrt{bc}\)
Tương tự
\(\sqrt{b+ca}\ge b+\sqrt{ca};\sqrt{c+ab}\ge c+\sqrt{ab}\)
Từ đó ta có đpcm
Dấu "=" xảy ra khi x=y=z=3
a) Vì tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính BC
=> BC = 2.Rngoại tiếp = 2.37 = 74
b) Gọi I là đường tròn nội tiếp tam giác ABC => đường tròn (I) tiếp xúc với 3 cạnh của tam giác ABC
Kẻ IM; IN; IP lần lượt vuông góc với AB; AC; BC => IM = IN = IP = bán kính đường tròn nội tiếp = 5
Gọi a; b là độ dài 2 cạnh AB; AC
Ta có: AB2 + AC2 = BC2 (Định lí Pi ta go) => a2 + b2 = 5476 (*)
Ta có: SABC = AB.AC : 2 = \(\frac{ab}{2}\) (1)
Mặt khác, SABC = SIAB + SIAC + SIBC = IM.AB/2 + IN.AC/2 + IP.BC/2
= \(\frac{5a}{2}+\frac{5b}{2}+\frac{5.74}{2}=\frac{5a+5b+370}{2}\) (2)
Từ (1)(2) => ab = 5a + 5b + 370 => ab = 5(a + b) + 370 (**)
Từ (*) => (a + b)2 - 2ab = 5476 . Thay (**) vào ta được:
(a+ b)2 - 10(a + b) -740 = 5476
=> (a + b)2 - 10(a+ b) - 6216 = 0
<=> (a + b)2 - 84(a + b) + 74(a + b) - 6216 = 0
<=> (a + b - 84).(a + b + 74) = 0
<=> a + b - 84 = 0 (Vì a; b là độ dài đoạn thẳng nên a + b + 74 > 0)
=> a + b = 84. Thay vào (**) => ab = 790
=> a. (84 - a) = 790 => a2 - 84a + 790 = 0 => (a2 - 84a + 422) -974 = 0 <=> (a - 42)2 = 974 <=> a - 42 = \(\sqrt{974}\) hoặc - \(\sqrt{974}\)
=> a = 42 + \(\sqrt{974}\) hoặc a = 42 - \(\sqrt{974}\)
=> b = ...
Vậy.....
khó vậy má