cho x, y ,z >0 và x+y+z +xy+yz+zx =6
Tìm gtln của p= xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}1\)
Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3
Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)
mà y >2 => y = 3 hoặc 4
y = 3 => z = 6;
y = 4 => z = 4
nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)
theo đề bài x<= y nên y = 3 => z = 3
Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)
\(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\ge0\\ \Leftrightarrow1-x\ge0\Leftrightarrow0< x\le1\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)+\left(y+z\right)^2\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)\le\left(y+z\right)^2\left(1-x-1\right)=-x\left(y+z\right)^2\\ \Leftrightarrow x-2\left(y+z\right)\le-\left(y+z\right)^2\\ \Leftrightarrow x\le\left(y+z\right)\left[2-\left(y+z\right)\right]\)
Đặt \(2-\left(y+z\right)=t\)
\(P=x\left(1-y\right)\left(1-z\right)\le x\left(\dfrac{1-y+1-z}{2}\right)^2=\dfrac{x\left[2-\left(y+z\right)\right]^2}{4}\\ \Leftrightarrow4P\le x\left[2-\left(y+z\right)\right]^2\le\left(y+z\right)\left[2-\left(y+z\right)\right]^3\\ \Leftrightarrow4P\le t^3\left(2-t\right)=\dfrac{27}{16}-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\)
Mà \(-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\le0\Leftrightarrow4P\le\dfrac{27}{16}\Leftrightarrow P\le\dfrac{27}{64}\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{4};y=z=\dfrac{1}{4}\)
Dat \(\left(a,b,c\right)=\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\left(a,b,c>0,abc=1\right)\)
Ta co \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{3}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\left(1\right)\)
BDT phu \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\left(2\right)\)
Do (1) nen (2) tuong duong voi
\(1+\frac{9}{\left(a+b+c\right)^2}\ge\frac{6}{a+b+c}\Leftrightarrow\left(1-\frac{3}{a+b+c}\right)^2\ge0\left(dung\right)\)
Suy ra (2) duoc chung minh
Do \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{xy}=\frac{xyz}{xy}=z\\bc=x\\ca=y\end{cases}}\)
nen (2) tuong duong \(1+\frac{3}{x+y+z}\ge\frac{6}{xy+yz+zx}\)
=> \(\frac{1}{x+y+z}\ge\frac{1}{3}\left(\frac{6}{x+y+z}-1\right)=\frac{2}{x+y+z}-\frac{1}{3}\)
Suy ra \(P\ge\frac{2}{x+y+z}-\frac{1}{3}-\frac{2}{x+y+z}=-\frac{1}{3}\)
Dau = xay ra khi x=y=z=1
\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)
\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)
\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...