K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\left(2\right)\\\left(y-1\right)^2\ge0\left(3\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\end{cases}\left(\forall x;y\inℝ\right)}}\)

\(\Rightarrow VT_{\left(1\right)}\ge\left(2x+2y+2\right)\left(2x+2y+2\right)\left(x;y\ge0\right)\)

\(\Leftrightarrow VT_{\left(1\right)}\ge4\left(x+y+1\right)^2\)(4)

Đặt \(3x+y+2=a;3y+x+b\Rightarrow a+b=4\left(x+y+1\right)\)

Lại có: \(\left(a-b\right)^2\ge0\left(\forall a;b\inℝ\right)\left(5\right)\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

\(\Leftrightarrow\frac{16\left(x+y+1\right)^2}{4}\ge\left(3x+y+2\right)\left(3y+x+2\right)\)

\(\Leftrightarrow4\left(x+y+1\right)^2\ge\left(3x+y+2\right)\left(3y+x+2\right)=VP_{\left(1\right)}\left(6\right)\)

Từ (4) và (6) => \(VT_{\left(1\right)}\ge VP_{\left(1\right)}\)

\(\Rightarrow VT_{\left(1\right)}=VP_{\left(1\right)}\)

Dấu '=' xảy ra đồng thời ở (2), (3), (5) 

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\3x+y+2=3y+x+2\end{cases}}\Leftrightarrow x=y=1\) 

1 tháng 4 2017

Từ định nghĩa bằng nhau của hai số phức, ta có:

a) ;

b) ;

c) .



7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...