tim so tu nhien n de n2009+n2008+1 la so nguyen to
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại đang vội nên viết nháp mà cũng không nháp hơi ẩu, cố ngồi dịch ra tí nhá.-.
Ta có:
\(n^{2018}+n^{2008}+1=n^2\left(n^{2016}-1\right)+n\left(n^{2007}-1\right)+\left(n^2+n+1\right)\)
\(\Rightarrow\hept{\begin{cases}n^2\left(n^{2016}-1\right)=n^2\left[\left(n^3\right)^{672}-1\right]=n^2\left(n^3-1\right)\left(n^{671}+n^{670}+...+1\right)=n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n\left(n^{2007}-1\right)=n\left[\left(n^3\right)^{669}-1\right]=n\left(n^3-1\right)\left(n^{668}+n^{667}+...+1\right)=n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n^2+n+1\end{cases}}\)
(Hằng đẳng thức mở rộng học ở toán 8 nâng cao)
Cộng 3 vế lại ta có:
\(n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(.....\right)\)
=> để \(n^{2018}+n^{2008}+1\text{ }\text{ là số nguyên tố thì }\orbr{\begin{cases}n^{2018}+n^{2008}+1=n^2+n+1\\n^2+n+1=1\end{cases}}\)
dễ rồi tự giải tiếp 2 trường hợp nha!!
Với a,m,n nguyên dương (\(a\ge2\))
\(a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)(1)
Thật vậy
Ta có: \(a^{3m+1}+a^{3n+2}+1=a^{3m+1}-a+a^{3n+2}-a^2+a^2+a+1\)
\(=a\left(a^{3m}-1\right)+a^2\left(a^{3n}-1\right)+a^2+a+1\)
Vì \(a^{3m}-1;a^{3n}-1\)đều chia hết cho \(a^3-1\)nên chia hết cho \(a^2+a+1\)
\(\Rightarrow a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)
Đặt \(A=n^{2018}+n^{2008}+1\)
+, n=1\(\Rightarrow A=3\)là số nguyên tố
+,\(n\ge2\),ta có 2018=672*3+2 ; 2008=669*3+1
Theo (1) ta có \(n^{2018}+n^{2008}+1\)chia hết cho \(n^2+n+1\)nên không là số nguyên tố
Vậy n=1 thì A là số nguyen tố
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath