K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Mk làm cho bài bđt nha

Bài 2 : 

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

Tương tự : y^2+z^2 >= 2yz ; z^2+x^2 >= 2zx

=> 2.(x^2+y^2+z^2) >= 2xy+2yz+2zx

<=> x^2+y^2+z^2 >= xy+yz+zx

<=> x^2+y^2+z^2+2xy+2yz+2zx >= 3.(xy+yz+zx)

<=> (x+y+z)^2 >= 3.(xy+yz+zx)

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z

Tk mk nha

22 tháng 3 2021

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chỉ cần chứng minh ID\perp DEID⊥DE .

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có: \widehat{BDH}=\widehat{CEH}=90^oBDH=CEH=90o.
Suy ra tứ giác ADHE là hình chữ nhật.
Gọi O là giao điểm của AH và DE, khi đó ta có OD = OH = OE = OA.
Suy ra tam giác ODH cân tại O vì vậy \widehat{ODH}=\widehat{OHD}ODH=OHD.
Ta cũng có tam giác IDH cân tại I suy ra \widehat{IDH}=\widehat{IHO}IDH=IHO.
Suy ra \widehat{IDO}+\widehat{OHD}=\widehat{IHD}+\widehat{IHA}=90^oIDO+OHD=IHD+IHA=90o \Leftrightarrow\widehat{IDO}=90^o⇔IDO=90o hay DI \perp⊥ DE.
Ta có DI\perp DE\left(D\in\left(I\right)\right)DI⊥DE(D∈(I)) suy ra DE tiếp xúc với (I) tại D.
Chứng minh tương tự ta cũng có DE tiếp xúc với (J) tại E.

Vậy DE là tiếp tuyến chung của đường tròn (I) và đường tròn (J).

27 tháng 11 2021

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có : góc BHD = góc CEH=90°

=> tứ giác ADHE là hình chữ nhật

Gọi O là giao điểm của AH và DE khi đó ta có OD=OE=OA 

=> Tam giác ODH cân tại O vì vậy góc ODH = góc OHD

Ta cũng có tam giác IDH cân tại I suy ra góc IDH= góc IHO

=> góc IDO + góc OHD = góc IHD + góc IHA=90° <=> góc IDO = 90° hay DI ⊥ DE

ta có DI ⊥ DE ( D ∈ I) => DE tiếp xúc với (I) tại D

Ta có  DE tiếp xúc với (J) tại E

Vậy DE là tiếp tuyến chung của đường tròn (I) và đường tròn (J)
\perp  \perp\perp\per\perp

 

 

     
24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2

AH
Akai Haruma
Giáo viên
7 tháng 2 2022

Lời giải:

1. $CH=\sqrt{AC^2-AH^2}=\sqrt{5^2-3^2}=4$ (cm) theo định lý Pitago

Áp dụng hệ thức lượng trong tam giác vuông:

$BH=\frac{AH^2}{CH}=\frac{3^2}{4}=2,25$ (cm) 

$BC=BH+CH=2,25+4=6,25$ (cm) 

2. 

Vì $AH$ là đường kính nên $\widehat{AEH}=\widehat{AFH}=90^0$ (góc nt chắn nửa đường tròn)

Tứ giác $AEHF$ có $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

3. 

Vì $AEHF$ là hcn nên $\widehat{AEF}=\widehat{AHF}$
Mà $\widehat{AHF}=\widehat{C}$ (cùng phụ $\widehat{FHC}$)

$\Rightarrow \widehat{AEF}=\widehat{C}$ nên $BEFC$ là tứ giác nội tiếp.

3. Gọi $T$ là trung điểm $HB$ 

Tam giavs $BEH$ vuông tại $E$ nên $ET=\frac{1}{2}BH=TH$

$\Rightarrow ETH$ cân tại $T$

$\Rightarrow \widehat{TEH}=\widehat{THE}=\widehat{C}$ (hai góc đồng vị với $EF\parallel AC$)

$=\widehat{AEF}$

$\Rightarrow \widehat{TEF}=\widehat{TEH}+\widehat{HEF}=\widehat{AEF}+\widehat{HEF}=\widehat{AEH}=90^0$

$\Rightarrow TE\perp EF$ nên $EF$ là tiếp tuyến đường tròn đường kính $BH$

Tương tự $EF$ là tiếp tuyến đường tròn đường kính $CH$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2022

Hình vẽ:

a: O là trung điểm của BC

b: Xét \(\left(\dfrac{BH}{2}\right)\) có

ΔBDH là tam giác nội tiếp

BH là đường kính

Do đó: ΔBDH vuông tại D

Xét \(\left(\dfrac{CH}{2}\right)\)

ΔCHE nội tiếp đường tròn

CH là đường kính

Do đó: ΔCHE vuông tại E

Xét tứ giác ADHE có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

18 tháng 9 2021

tính bán kính đường tròn ngoại tiếp làm sao ạ?