GIÚP MÌNH VỚI CÁC BẠN ƠI !
1:So sánh A , B
A= 2010/2011 + 2011/2012
B=2010+2011/2011+2012
2:
tìm n thuộc N để n+1/n-1 là 1 số tự nhiên
MÌNH ĐANG CẦN RẤT GẤP ! BẠN NÀO NHANH MÌNH TICK CHO!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
Vì :
\(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên : \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
Bài 2 :
\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
\(\Rightarrow\)\(2⋮\left(n-1\right)\)
\(\Rightarrow\)\(\left(n-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(n-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(n\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vì n là số tự nhiên nên \(n\in\left\{0;2;3\right\}\)
Vậy \(n\in\left\{0;2;3\right\}\)
Bài 2 :
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)và 4
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
Chú ý Q nhé
Bạn tách Q ra thành \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Mỗi số hạng của Q đều nhỏ hơn mỗi số hạng có cùng tử tương ứng của P ( do mẫu lớn hơn )
Vậy P>Q
Tách Q ra thành tổng 3 phân số có cùng mẫu là 2011+2012+2013.
Sau đó so sánh mỗi phân số của Q với 1 phân số của P,ta thấy P>Q.
Các bạn ơi mình nói thêm là những chỗ nào có dấu / là phân số nhé ! ví dụ như là 2010/2011