CMR:Chân ba đường cao của một tam giác bất kì, ba trung điểm của ba cạnh cùng nằm trên một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 PHẦN 8 , ĐÂY LÀ CÂU CUỐI TRONG MỘT BÀI THI CHUYÊN TOÁN CỰC KHÓ CỦA MỸ
https://www.youtube.com/watch?v=OkmNXy7er84&ab_channel=3Blue1Brown ĐÂY LÀ LINK NẾU MỌI NGI CÓ Ý ĐỊNH TÌM HIÊU CÁI NÀY
Lời giải:
a.
$AC, BD$ cùng vuông góc với $AB$ (do là tiếp tuyến)
$MH\perp AB$ (gt)
$\Rightarrow AC\parallel MH\parallel BD$. Áp dụng định lý Talet:
$\frac{MK}{BD}=\frac{MC}{CD}$
$\Rightarrow MK=\frac{MC.BD}{CD}(1)$
$\frac{HK}{AC}=\frac{BK}{BC}=\frac{MD}{DC}$
$\Rightarrow HK=\frac{AC.MD}{DC}(2)$
Theo tính chất 2 tiếp tuyến cắt nhau thì $AC=MC; BD=MD(3)$
Từ $(1); (2); (3)\Rightarrow HK=MK$ nên $K$ là trung điểm $MH$
b. Gọi $K'$ là giao của $AD$ với $MH$
Tương tự như câu a, áp dụng định lý Ta let:
$\frac{MK'}{CA}=\frac{DM}{DC}$
$\Rightarrow MK'=\frac{AC.DM}{DC}$
$\frac{HK'}{DB}=\frac{AK'}{AD}=\frac{CM}{CD}$
$\Rightarrow HK'=\frac{BD.CM}{CD}$
$\Rightarrow HK'=MK'$ nên $K'$ là trung điểm $MH$
$\Rightarrow K\equiv K'$ nên $BC, AD, MH$ đồng quy.
c. Không có dữ liệu điểm $E$.
dường tròn ole. gg searcj đi bạn @@