Biết: 2017>|x-z|;|y-z|<1.Chứng minh rằng:|x-y|<2018
Ai giúp mình với sắp thi z.Mình xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/97024326380.html
Tham khảo ở link này
Học tốt!!!!!!!!!!
Có : 2018 = 2017 + 1 > |x-z|+|y-z| = |x-z|+|z-y| >= |x-z+z-y| = |x-y|
=> ĐPCM
Tk mk nha
\(\left|x-z\right|+\left|y-z\right|< 2017+1=2018\)
Mà \(\left|x-z\right|+\left|y-z\right|=\left|x-z\right|+\left|z-y\right|\ge\left|x-z+z-y\right|=\left|x-y\right|\)
\(\Rightarrow\)\(\left|x-y\right|\le\left|x-z\right|+\left|y-z\right|< 2018\)\(\Leftrightarrow\)\(\left|x-y\right|< 2018\) ( đpcm )
...
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
Xin phép được sủa đề một chút nhé :)
\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)
\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)
\(=2\left(xy+yz+zx\right)=4034\)